| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem73.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem73.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem73.f |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 4 |
|
fourierdlem73.m |
|- ( ph -> M e. NN ) |
| 5 |
|
fourierdlem73.qf |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 6 |
|
fourierdlem73.q0 |
|- ( ph -> ( Q ` 0 ) = A ) |
| 7 |
|
fourierdlem73.qm |
|- ( ph -> ( Q ` M ) = B ) |
| 8 |
|
fourierdlem73.qilt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 9 |
|
fourierdlem73.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 10 |
|
fourierdlem73.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 11 |
|
fourierdlem73.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 12 |
|
fourierdlem73.g |
|- G = ( RR _D F ) |
| 13 |
|
fourierdlem73.gcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 14 |
|
fourierdlem73.gbd |
|- ( ph -> E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 15 |
|
fourierdlem73.s |
|- S = ( r e. RR+ |-> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 16 |
|
fourierdlem73.d |
|- D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 17 |
|
cncff |
|- ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 18 |
13 17
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 19 |
|
ax-resscn |
|- RR C_ CC |
| 20 |
19
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
| 21 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 22 |
5 21
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
| 24 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
| 26 |
23 25
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 27 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 29 |
23 28
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 30 |
26 29
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 31 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) C_ CC |
| 32 |
31 11
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. CC ) |
| 33 |
32
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> R e. CC ) |
| 34 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) C_ CC |
| 35 |
34 10
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. CC ) |
| 36 |
35
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> L e. CC ) |
| 37 |
3
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC ) |
| 38 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A e. RR ) |
| 39 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> B e. RR ) |
| 40 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 41 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 42 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 43 |
|
eliccre |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 45 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
| 47 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
| 49 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 50 |
49 25
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
| 51 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` i ) e. ( A [,] B ) ) -> A <_ ( Q ` i ) ) |
| 52 |
46 48 50 51
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A <_ ( Q ` i ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A <_ ( Q ` i ) ) |
| 54 |
40
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 55 |
41
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 56 |
|
iccgelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
| 57 |
54 55 42 56
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
| 58 |
38 40 44 53 57
|
letrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A <_ x ) |
| 59 |
|
iccleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 60 |
54 55 42 59
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 61 |
45
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
| 62 |
47
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
| 63 |
49 28
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
| 65 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
| 66 |
61 62 64 65
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
| 67 |
44 41 39 60 66
|
letrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ B ) |
| 68 |
38 39 44 58 67
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 69 |
37 68
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 70 |
36 69
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) e. CC ) |
| 71 |
33 70
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) |
| 72 |
71 16
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
| 73 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 74 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 75 |
|
iccntr |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 76 |
26 29 75
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 77 |
20 30 72 73 74 76
|
dvresntr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( RR _D ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 78 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
| 79 |
78
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 80 |
79
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 81 |
|
fvres |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 82 |
80 81
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 83 |
80 71
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) |
| 84 |
16
|
fvmpt2 |
|- ( ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) /\ if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) -> ( D ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 85 |
80 83 84
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
| 86 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
| 87 |
80 54
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
| 88 |
80 55
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 89 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 90 |
|
ioogtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < x ) |
| 91 |
87 88 89 90
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < x ) |
| 92 |
86 91
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x =/= ( Q ` i ) ) |
| 93 |
92
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. x = ( Q ` i ) ) |
| 94 |
93
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 95 |
|
elioore |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
| 96 |
95
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 97 |
|
iooltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
| 98 |
87 88 89 97
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
| 99 |
96 98
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x =/= ( Q ` ( i + 1 ) ) ) |
| 100 |
99
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. x = ( Q ` ( i + 1 ) ) ) |
| 101 |
100
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
| 102 |
85 94 101
|
3eqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) = ( D ` x ) ) |
| 103 |
82 102
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 104 |
103
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 105 |
|
ffn |
|- ( D : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC -> D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 106 |
72 105
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 107 |
|
ffn |
|- ( F : ( A [,] B ) --> CC -> F Fn ( A [,] B ) ) |
| 108 |
3 107
|
syl |
|- ( ph -> F Fn ( A [,] B ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F Fn ( A [,] B ) ) |
| 110 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 111 |
46 48 49 110
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 112 |
|
fnssres |
|- ( ( F Fn ( A [,] B ) /\ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) -> ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 113 |
109 111 112
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 114 |
78
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 115 |
|
fvreseq |
|- ( ( ( D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) /\ ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 116 |
106 113 114 115
|
syl21anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 117 |
104 116
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 118 |
114
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 119 |
117 118
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 120 |
119
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 121 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : ( A [,] B ) --> CC ) |
| 122 |
21
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A [,] B ) C_ RR ) |
| 123 |
114 30
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
| 124 |
74 73
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 125 |
20 121 122 123 124
|
syl22anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 126 |
12
|
eqcomi |
|- ( RR _D F ) = G |
| 127 |
126
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D F ) = G ) |
| 128 |
|
iooretop |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) |
| 129 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 130 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 131 |
130
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 132 |
129 123 131
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 133 |
128 132
|
mpbii |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 134 |
127 133
|
reseq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 135 |
125 134
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 136 |
77 120 135
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 137 |
136
|
feq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D D ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC <-> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) ) |
| 138 |
18 137
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
| 139 |
138
|
feqmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) ) |
| 140 |
139 136
|
eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 141 |
|
ioombl |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol |
| 142 |
141
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol ) |
| 143 |
26 29 8
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
| 144 |
|
volioo |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) ) |
| 145 |
26 29 143 144
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) ) |
| 146 |
29 26
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) e. RR ) |
| 147 |
145 146
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. RR ) |
| 148 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 149 |
|
nfv |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) |
| 150 |
|
nfra1 |
|- F/ x A. x e. dom G ( abs ` ( G ` x ) ) <_ y |
| 151 |
149 150
|
nfan |
|- F/ x ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 152 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 153 |
|
fdm |
|- ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 154 |
18 153
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 155 |
154
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 156 |
152 155
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 157 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( G ` x ) ) |
| 158 |
156 157
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( G ` x ) ) |
| 159 |
158
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
| 160 |
159
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
| 161 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 162 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom G <-> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 163 |
154 162
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom G ) |
| 164 |
163
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. dom G ) |
| 165 |
156 164
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom G ) |
| 166 |
165
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom G ) |
| 167 |
|
rsp |
|- ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> ( x e. dom G -> ( abs ` ( G ` x ) ) <_ y ) ) |
| 168 |
161 166 167
|
sylc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
| 169 |
168
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
| 170 |
160 169
|
eqbrtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
| 171 |
170
|
ex |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> ( x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
| 172 |
151 171
|
ralrimi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
| 173 |
172
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) -> ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
| 174 |
173
|
reximdva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> E. y e. RR A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
| 175 |
148 174
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
| 176 |
142 147 13 175
|
cnbdibl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. L^1 ) |
| 177 |
140 176
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. L^1 ) |
| 178 |
177
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. L^1 ) |
| 179 |
141
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol ) |
| 180 |
147
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. RR ) |
| 181 |
140 13
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 182 |
181
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 183 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
| 184 |
183
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> cos e. ( CC -cn-> CC ) ) |
| 185 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
| 186 |
185
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 187 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> r e. RR ) |
| 188 |
187
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> r e. CC ) |
| 189 |
|
ssid |
|- CC C_ CC |
| 190 |
189
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> CC C_ CC ) |
| 191 |
186 188 190
|
constcncfg |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 192 |
185
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 193 |
189
|
a1i |
|- ( ph -> CC C_ CC ) |
| 194 |
192 193
|
idcncfg |
|- ( ph -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 195 |
194
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 196 |
191 195
|
mulcncf |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 197 |
184 196
|
cncfmpt1f |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( cos ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 198 |
197
|
negcncfg |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> -u ( cos ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 199 |
182 198
|
mulcncf |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 200 |
|
nfv |
|- F/ x ( ph /\ i e. ( 0 ..^ M ) ) |
| 201 |
200 150
|
nfan |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 202 |
136
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D D ) ` x ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 203 |
202 157
|
sylan9eq |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) = ( G ` x ) ) |
| 204 |
203
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
| 205 |
204
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
| 206 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
| 207 |
164
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. dom G ) |
| 208 |
206 207 167
|
sylc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
| 209 |
205 208
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 210 |
209
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
| 211 |
201 210
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 212 |
211
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
| 213 |
212
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
| 214 |
148 213
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 215 |
214
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 216 |
|
eqidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ) |
| 217 |
|
fveq2 |
|- ( x = z -> ( ( RR _D D ) ` x ) = ( ( RR _D D ) ` z ) ) |
| 218 |
|
eleq1w |
|- ( x = z -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 219 |
218
|
anbi2d |
|- ( x = z -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
| 220 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
| 221 |
217 220
|
eqeq12d |
|- ( x = z -> ( ( ( RR _D D ) ` x ) = ( G ` x ) <-> ( ( RR _D D ) ` z ) = ( G ` z ) ) ) |
| 222 |
219 221
|
imbi12d |
|- ( x = z -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) = ( G ` x ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` z ) = ( G ` z ) ) ) ) |
| 223 |
222 203
|
chvarvv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` z ) = ( G ` z ) ) |
| 224 |
217 223
|
sylan9eqr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( RR _D D ) ` x ) = ( G ` z ) ) |
| 225 |
|
oveq2 |
|- ( x = z -> ( r x. x ) = ( r x. z ) ) |
| 226 |
225
|
fveq2d |
|- ( x = z -> ( cos ` ( r x. x ) ) = ( cos ` ( r x. z ) ) ) |
| 227 |
226
|
negeqd |
|- ( x = z -> -u ( cos ` ( r x. x ) ) = -u ( cos ` ( r x. z ) ) ) |
| 228 |
227
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> -u ( cos ` ( r x. x ) ) = -u ( cos ` ( r x. z ) ) ) |
| 229 |
224 228
|
oveq12d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
| 230 |
229
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
| 231 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 232 |
|
fvres |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) = ( G ` z ) ) |
| 233 |
232
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) = ( G ` z ) ) |
| 234 |
18
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) e. CC ) |
| 235 |
233 234
|
eqeltrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( G ` z ) e. CC ) |
| 236 |
235
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( G ` z ) e. CC ) |
| 237 |
|
simpl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
| 238 |
|
elioore |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. RR ) |
| 239 |
238
|
adantl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
| 240 |
237 239
|
remulcld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. z ) e. RR ) |
| 241 |
240
|
recnd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. z ) e. CC ) |
| 242 |
241
|
coscld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( cos ` ( r x. z ) ) e. CC ) |
| 243 |
242
|
negcld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. z ) ) e. CC ) |
| 244 |
243
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. z ) ) e. CC ) |
| 245 |
236 244
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) e. CC ) |
| 246 |
216 230 231 245
|
fvmptd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
| 247 |
246
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) = ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) ) |
| 248 |
247
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) = ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) ) |
| 249 |
245
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) e. RR ) |
| 250 |
249
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) e. RR ) |
| 251 |
236
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. RR ) |
| 252 |
251
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. RR ) |
| 253 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> y e. RR ) |
| 254 |
244
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) e. RR ) |
| 255 |
|
1red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 1 e. RR ) |
| 256 |
236
|
absge0d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 <_ ( abs ` ( G ` z ) ) ) |
| 257 |
242
|
absnegd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) = ( abs ` ( cos ` ( r x. z ) ) ) ) |
| 258 |
|
abscosbd |
|- ( ( r x. z ) e. RR -> ( abs ` ( cos ` ( r x. z ) ) ) <_ 1 ) |
| 259 |
240 258
|
syl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( cos ` ( r x. z ) ) ) <_ 1 ) |
| 260 |
257 259
|
eqbrtrd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) <_ 1 ) |
| 261 |
260
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) <_ 1 ) |
| 262 |
254 255 251 256 261
|
lemul2ad |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( G ` z ) ) x. ( abs ` -u ( cos ` ( r x. z ) ) ) ) <_ ( ( abs ` ( G ` z ) ) x. 1 ) ) |
| 263 |
236 244
|
absmuld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) = ( ( abs ` ( G ` z ) ) x. ( abs ` -u ( cos ` ( r x. z ) ) ) ) ) |
| 264 |
251
|
recnd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. CC ) |
| 265 |
264
|
mulridd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( G ` z ) ) x. 1 ) = ( abs ` ( G ` z ) ) ) |
| 266 |
265
|
eqcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) = ( ( abs ` ( G ` z ) ) x. 1 ) ) |
| 267 |
262 263 266
|
3brtr4d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ ( abs ` ( G ` z ) ) ) |
| 268 |
267
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ ( abs ` ( G ` z ) ) ) |
| 269 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 270 |
|
nfra1 |
|- F/ x A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y |
| 271 |
200 270
|
nfan |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 272 |
204
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` x ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
| 273 |
272
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( G ` x ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
| 274 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 275 |
273 274
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( G ` x ) ) <_ y ) |
| 276 |
275
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> ( abs ` ( G ` x ) ) <_ y ) ) |
| 277 |
276
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> ( abs ` ( G ` x ) ) <_ y ) ) |
| 278 |
271 277
|
ralimdaa |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y ) ) |
| 279 |
269 278
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y ) |
| 280 |
220
|
fveq2d |
|- ( x = z -> ( abs ` ( G ` x ) ) = ( abs ` ( G ` z ) ) ) |
| 281 |
280
|
breq1d |
|- ( x = z -> ( ( abs ` ( G ` x ) ) <_ y <-> ( abs ` ( G ` z ) ) <_ y ) ) |
| 282 |
281
|
cbvralvw |
|- ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y <-> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
| 283 |
279 282
|
sylib |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
| 284 |
283
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
| 285 |
284
|
r19.21bi |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) <_ y ) |
| 286 |
250 252 253 268 285
|
letrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ y ) |
| 287 |
248 286
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
| 288 |
287
|
ralrimiva |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
| 289 |
138
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
| 290 |
289
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
| 291 |
|
simpl |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
| 292 |
95
|
adantl |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 293 |
291 292
|
remulcld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
| 294 |
293
|
recnd |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
| 295 |
294
|
coscld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( cos ` ( r x. x ) ) e. CC ) |
| 296 |
295
|
negcld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. x ) ) e. CC ) |
| 297 |
296
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. x ) ) e. CC ) |
| 298 |
290 297
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC ) |
| 299 |
298
|
ralrimiva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC ) |
| 300 |
|
dmmptg |
|- ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 301 |
299 300
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 302 |
301
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 303 |
288 302
|
raleqtrrdv |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
| 304 |
303
|
ex |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) ) |
| 305 |
304
|
reximdva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> E. y e. RR A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) ) |
| 306 |
215 305
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> E. y e. RR A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
| 307 |
179 180 199 306
|
cnbdibl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. L^1 ) |
| 308 |
307
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. L^1 ) |
| 309 |
289
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
| 310 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> r e. CC ) |
| 311 |
185
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. CC ) |
| 312 |
311
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> x e. CC ) |
| 313 |
310 312
|
mulcld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> ( r x. x ) e. CC ) |
| 314 |
313
|
coscld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> ( cos ` ( r x. x ) ) e. CC ) |
| 315 |
293
|
ancoms |
|- ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ r e. RR ) -> ( r x. x ) e. RR ) |
| 316 |
|
abscosbd |
|- ( ( r x. x ) e. RR -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
| 317 |
315 316
|
syl |
|- ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
| 318 |
317
|
adantll |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
| 319 |
16
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) ) |
| 320 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR ) |
| 321 |
8
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 322 |
|
eqcom |
|- ( ( Q ` ( i + 1 ) ) = x <-> x = ( Q ` ( i + 1 ) ) ) |
| 323 |
322
|
biimpri |
|- ( x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) = x ) |
| 324 |
323
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) = x ) |
| 325 |
321 324
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
| 326 |
320 325
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> x =/= ( Q ` i ) ) |
| 327 |
326
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> -. x = ( Q ` i ) ) |
| 328 |
327
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 329 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
| 330 |
329
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
| 331 |
328 330
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = L ) |
| 332 |
29
|
leidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
| 333 |
26 29 29 143 332
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 334 |
319 331 333 10
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) = L ) |
| 335 |
334 35
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. CC ) |
| 336 |
335
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. CC ) |
| 337 |
|
eqid |
|- ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) = ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) |
| 338 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
| 339 |
338
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
| 340 |
26
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
| 341 |
29
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 342 |
|
lbicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 343 |
340 341 143 342
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 344 |
319 339 343 11
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) = R ) |
| 345 |
344 32
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. CC ) |
| 346 |
345
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( D ` ( Q ` i ) ) e. CC ) |
| 347 |
|
eqid |
|- ( abs ` ( D ` ( Q ` i ) ) ) = ( abs ` ( D ` ( Q ` i ) ) ) |
| 348 |
|
eqid |
|- S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x |
| 349 |
|
simpr |
|- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
| 350 |
4
|
nnrpd |
|- ( ph -> M e. RR+ ) |
| 351 |
350
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> M e. RR+ ) |
| 352 |
349 351
|
rpdivcld |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. RR+ ) |
| 353 |
352
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( e / M ) e. RR+ ) |
| 354 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> r e. CC ) |
| 355 |
29
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 356 |
355
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 357 |
354 356
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. CC ) |
| 358 |
357
|
coscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. CC ) |
| 359 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 360 |
187 359
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. RR ) |
| 361 |
|
abscosbd |
|- ( ( r x. ( Q ` ( i + 1 ) ) ) e. RR -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
| 362 |
360 361
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
| 363 |
362
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
| 364 |
26
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 365 |
364
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( Q ` i ) e. CC ) |
| 366 |
354 365
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( r x. ( Q ` i ) ) e. CC ) |
| 367 |
366
|
coscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( cos ` ( r x. ( Q ` i ) ) ) e. CC ) |
| 368 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( Q ` i ) e. RR ) |
| 369 |
187 368
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( r x. ( Q ` i ) ) e. RR ) |
| 370 |
|
abscosbd |
|- ( ( r x. ( Q ` i ) ) e. RR -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
| 371 |
369 370
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
| 372 |
371
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
| 373 |
|
fveq2 |
|- ( z = x -> ( ( RR _D D ) ` z ) = ( ( RR _D D ) ` x ) ) |
| 374 |
373
|
fveq2d |
|- ( z = x -> ( abs ` ( ( RR _D D ) ` z ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
| 375 |
374
|
cbvitgv |
|- S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x |
| 376 |
375
|
oveq2i |
|- ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) = ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) |
| 377 |
376
|
oveq1i |
|- ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) = ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) |
| 378 |
377
|
oveq1i |
|- ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) = ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) |
| 379 |
378
|
fveq2i |
|- ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) ) = ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) ) |
| 380 |
379
|
oveq1i |
|- ( ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) ) + 1 ) = ( ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) ) + 1 ) |
| 381 |
178 308 309 314 318 336 337 346 347 348 353 358 363 367 372 380
|
fourierdlem47 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) |
| 382 |
|
simplll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ph ) |
| 383 |
|
simpllr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> i e. ( 0 ..^ M ) ) |
| 384 |
|
elioore |
|- ( r e. ( m (,) +oo ) -> r e. RR ) |
| 385 |
384
|
adantl |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. RR ) |
| 386 |
|
0red |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 e. RR ) |
| 387 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
| 388 |
387
|
adantr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m e. RR ) |
| 389 |
|
nngt0 |
|- ( m e. NN -> 0 < m ) |
| 390 |
389
|
adantr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 < m ) |
| 391 |
388
|
rexrd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m e. RR* ) |
| 392 |
|
pnfxr |
|- +oo e. RR* |
| 393 |
392
|
a1i |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> +oo e. RR* ) |
| 394 |
|
simpr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. ( m (,) +oo ) ) |
| 395 |
|
ioogtlb |
|- ( ( m e. RR* /\ +oo e. RR* /\ r e. ( m (,) +oo ) ) -> m < r ) |
| 396 |
391 393 394 395
|
syl3anc |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m < r ) |
| 397 |
386 388 385 390 396
|
lttrd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 < r ) |
| 398 |
385 397
|
elrpd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. RR+ ) |
| 399 |
398
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> r e. RR+ ) |
| 400 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` i ) e. RR ) |
| 401 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 402 |
72
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
| 403 |
402
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
| 404 |
|
rpcn |
|- ( r e. RR+ -> r e. CC ) |
| 405 |
404
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
| 406 |
44
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 407 |
406
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 408 |
405 407
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
| 409 |
408
|
sincld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
| 410 |
403 409
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 411 |
400 401 410
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 412 |
143
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
| 413 |
72
|
feqmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) ) |
| 414 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
| 415 |
329 414
|
eqtr4d |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 416 |
415
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 417 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 418 |
417
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
| 419 |
54
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
| 420 |
55
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
| 421 |
44
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
| 422 |
26
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR ) |
| 423 |
44
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. RR ) |
| 424 |
57
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) <_ x ) |
| 425 |
|
neqne |
|- ( -. x = ( Q ` i ) -> x =/= ( Q ` i ) ) |
| 426 |
425
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x =/= ( Q ` i ) ) |
| 427 |
422 423 424 426
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) < x ) |
| 428 |
427
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
| 429 |
44
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
| 430 |
29
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 431 |
60
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
| 432 |
322
|
biimpi |
|- ( ( Q ` ( i + 1 ) ) = x -> x = ( Q ` ( i + 1 ) ) ) |
| 433 |
432
|
necon3bi |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
| 434 |
433
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
| 435 |
429 430 431 434
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
| 436 |
435
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
| 437 |
419 420 421 428 436
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 438 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 439 |
437 438
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
| 440 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
| 441 |
440
|
eqcomd |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( F ` x ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 442 |
441
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( F ` x ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
| 443 |
418 439 442
|
3eqtrrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 444 |
416 443
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
| 445 |
444
|
ifeq2da |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 446 |
445
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
| 447 |
319 413 446
|
3eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
| 448 |
|
eqid |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
| 449 |
200 448 26 29 9 10 11
|
cncfiooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 450 |
447 449
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 451 |
413 450
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 452 |
451
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> D e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 453 |
|
eqid |
|- ( RR _D D ) = ( RR _D D ) |
| 454 |
136 13
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 455 |
454
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( RR _D D ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 456 |
214
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
| 457 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> r e. RR+ ) |
| 458 |
400 401 412 452 453 455 456 457
|
fourierdlem39 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
| 459 |
411 458
|
eqtr3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
| 460 |
382 383 399 459
|
syl21anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
| 461 |
460
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) ) |
| 462 |
461
|
breq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
| 463 |
462
|
ralbidva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
| 464 |
463
|
rexbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
| 465 |
464
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
| 466 |
381 465
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 467 |
466
|
an32s |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 468 |
102
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) = ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) ) |
| 469 |
468
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 470 |
469
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 471 |
470
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 472 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( Q ` i ) e. RR ) |
| 473 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 474 |
402
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
| 475 |
384
|
recnd |
|- ( r e. ( m (,) +oo ) -> r e. CC ) |
| 476 |
475
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
| 477 |
406
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 478 |
476 477
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
| 479 |
478
|
sincld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
| 480 |
474 479
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 481 |
472 473 480
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 482 |
69
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 483 |
482 479
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 484 |
472 473 483
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 485 |
471 481 484
|
3eqtr3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 486 |
485
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 487 |
486
|
breq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
| 488 |
487
|
ralbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
| 489 |
488
|
adantlr |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
| 490 |
489
|
rexbidv |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
| 491 |
467 490
|
mpbid |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 492 |
491
|
ralrimiva |
|- ( ( ph /\ e e. RR+ ) -> A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 493 |
492
|
ralrimiva |
|- ( ph -> A. e e. RR+ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 494 |
|
nfv |
|- F/ i ( ph /\ e e. RR+ ) |
| 495 |
|
nfra1 |
|- F/ i A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 496 |
494 495
|
nfan |
|- F/ i ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 497 |
|
nfv |
|- F/ r ( ph /\ e e. RR+ ) |
| 498 |
|
nfcv |
|- F/_ r ( 0 ..^ M ) |
| 499 |
|
nfcv |
|- F/_ r NN |
| 500 |
|
nfra1 |
|- F/ r A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 501 |
499 500
|
nfrexw |
|- F/ r E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 502 |
498 501
|
nfralw |
|- F/ r A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 503 |
497 502
|
nfan |
|- F/ r ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 504 |
|
nfmpt1 |
|- F/_ i ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) |
| 505 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
| 506 |
505
|
a1i |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( 0 ..^ M ) e. Fin ) |
| 507 |
|
simpr |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 508 |
|
eqid |
|- { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } = { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } |
| 509 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) = ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) |
| 510 |
|
eqid |
|- sup ( ran ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) , RR , < ) = sup ( ran ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) , RR , < ) |
| 511 |
496 503 504 506 507 508 509 510
|
fourierdlem31 |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 512 |
|
simpr |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 513 |
|
nfv |
|- F/ n ( ph /\ e e. RR+ ) |
| 514 |
|
nfre1 |
|- F/ n E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 515 |
513 514
|
nfan |
|- F/ n ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 516 |
|
nfv |
|- F/ r n e. NN |
| 517 |
|
nfra1 |
|- F/ r A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
| 518 |
497 516 517
|
nf3an |
|- F/ r ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 519 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ph ) |
| 520 |
|
elioore |
|- ( r e. ( n (,) +oo ) -> r e. RR ) |
| 521 |
520
|
adantl |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. RR ) |
| 522 |
|
0red |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 e. RR ) |
| 523 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
| 524 |
523
|
adantr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n e. RR ) |
| 525 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
| 526 |
525
|
adantr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 < n ) |
| 527 |
524
|
rexrd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n e. RR* ) |
| 528 |
392
|
a1i |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> +oo e. RR* ) |
| 529 |
|
simpr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. ( n (,) +oo ) ) |
| 530 |
|
ioogtlb |
|- ( ( n e. RR* /\ +oo e. RR* /\ r e. ( n (,) +oo ) ) -> n < r ) |
| 531 |
527 528 529 530
|
syl3anc |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n < r ) |
| 532 |
522 524 521 526 531
|
lttrd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 < r ) |
| 533 |
521 532
|
elrpd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. RR+ ) |
| 534 |
533
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> r e. RR+ ) |
| 535 |
1
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> A e. RR ) |
| 536 |
2
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> B e. RR ) |
| 537 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 538 |
537
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 539 |
404
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> r e. CC ) |
| 540 |
21
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 541 |
540
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 542 |
541
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 543 |
539 542
|
mulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( r x. x ) e. CC ) |
| 544 |
543
|
sincld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
| 545 |
538 544
|
mulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 546 |
535 536 545
|
itgioo |
|- ( ( ph /\ r e. RR+ ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( A [,] B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 547 |
6
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
| 548 |
7
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
| 549 |
547 548
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 550 |
549
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 551 |
550
|
itgeq1d |
|- ( ( ph /\ r e. RR+ ) -> S. ( A [,] B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 552 |
|
0zd |
|- ( ( ph /\ r e. RR+ ) -> 0 e. ZZ ) |
| 553 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 554 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 555 |
554
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 556 |
553 555
|
eqtr4i |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 557 |
4 556
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 558 |
557
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 559 |
22
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> Q : ( 0 ... M ) --> RR ) |
| 560 |
8
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 561 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
| 562 |
549
|
eqcomd |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
| 563 |
562
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
| 564 |
561 563
|
eleqtrd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) ) |
| 565 |
564
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) ) |
| 566 |
565 545
|
syldan |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 567 |
26
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
| 568 |
29
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
| 569 |
114 111
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
| 570 |
121 569
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
| 571 |
570 9
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 572 |
571
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 573 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 574 |
573
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> sin e. ( CC -cn-> CC ) ) |
| 575 |
185
|
a1i |
|- ( ( ph /\ r e. RR+ ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 576 |
404
|
adantl |
|- ( ( ph /\ r e. RR+ ) -> r e. CC ) |
| 577 |
189
|
a1i |
|- ( ( ph /\ r e. RR+ ) -> CC C_ CC ) |
| 578 |
575 576 577
|
constcncfg |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 579 |
194
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 580 |
578 579
|
mulcncf |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 581 |
580
|
adantr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 582 |
574 581
|
cncfmpt1f |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 583 |
572 582
|
mulcncf |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 584 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) |
| 585 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) |
| 586 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) |
| 587 |
3
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC ) |
| 588 |
45
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
| 589 |
47
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
| 590 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 591 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
| 592 |
588 589 590 591 80
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 593 |
587 592
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 594 |
593
|
adantllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 595 |
576
|
ad2antrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
| 596 |
311
|
adantl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 597 |
595 596
|
mulcld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
| 598 |
597
|
sincld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
| 599 |
570
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 600 |
10 599
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 601 |
600
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 602 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
| 603 |
602
|
adantr |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
| 604 |
95
|
adantl |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
| 605 |
603 604
|
remulcld |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
| 606 |
605
|
adantll |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
| 607 |
606
|
ad2ant2r |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) =/= ( r x. ( Q ` ( i + 1 ) ) ) ) ) -> ( r x. x ) e. RR ) |
| 608 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 609 |
608
|
sincld |
|- ( y e. RR -> ( sin ` y ) e. CC ) |
| 610 |
609
|
adantl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) -> ( sin ` y ) e. CC ) |
| 611 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) |
| 612 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) |
| 613 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) |
| 614 |
185
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
| 615 |
576
|
adantr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. CC ) |
| 616 |
568
|
recnd |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
| 617 |
611 614 615 616
|
constlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 618 |
614 612 616
|
idlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 619 |
611 612 613 595 596 617 618
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 620 |
|
eqid |
|- ( y e. CC |-> ( sin ` y ) ) = ( y e. CC |-> ( sin ` y ) ) |
| 621 |
|
sinf |
|- sin : CC --> CC |
| 622 |
621
|
a1i |
|- ( T. -> sin : CC --> CC ) |
| 623 |
622
|
feqmptd |
|- ( T. -> sin = ( y e. CC |-> ( sin ` y ) ) ) |
| 624 |
623 573
|
eqeltrrdi |
|- ( T. -> ( y e. CC |-> ( sin ` y ) ) e. ( CC -cn-> CC ) ) |
| 625 |
19
|
a1i |
|- ( T. -> RR C_ CC ) |
| 626 |
|
resincl |
|- ( y e. RR -> ( sin ` y ) e. RR ) |
| 627 |
626
|
adantl |
|- ( ( T. /\ y e. RR ) -> ( sin ` y ) e. RR ) |
| 628 |
620 624 625 625 627
|
cncfmptssg |
|- ( T. -> ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) ) |
| 629 |
628
|
mptru |
|- ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) |
| 630 |
629
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) ) |
| 631 |
602
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. RR ) |
| 632 |
631 568
|
remulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. RR ) |
| 633 |
|
fveq2 |
|- ( y = ( r x. ( Q ` ( i + 1 ) ) ) -> ( sin ` y ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
| 634 |
630 632 633
|
cnmptlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. ( ( y e. RR |-> ( sin ` y ) ) limCC ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
| 635 |
|
fveq2 |
|- ( y = ( r x. x ) -> ( sin ` y ) = ( sin ` ( r x. x ) ) ) |
| 636 |
|
fveq2 |
|- ( ( r x. x ) = ( r x. ( Q ` ( i + 1 ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
| 637 |
636
|
ad2antll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) = ( r x. ( Q ` ( i + 1 ) ) ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
| 638 |
607 610 619 634 635 637
|
limcco |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 639 |
584 585 586 594 598 601 638
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 640 |
570
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
| 641 |
11 640
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
| 642 |
641
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
| 643 |
606
|
ad2ant2r |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) =/= ( r x. ( Q ` i ) ) ) ) -> ( r x. x ) e. RR ) |
| 644 |
567
|
recnd |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
| 645 |
611 614 615 644
|
constlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) limCC ( Q ` i ) ) ) |
| 646 |
614 612 644
|
idlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) limCC ( Q ` i ) ) ) |
| 647 |
611 612 613 595 596 645 646
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` i ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) limCC ( Q ` i ) ) ) |
| 648 |
631 567
|
remulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` i ) ) e. RR ) |
| 649 |
|
fveq2 |
|- ( y = ( r x. ( Q ` i ) ) -> ( sin ` y ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
| 650 |
630 648 649
|
cnmptlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` i ) ) ) e. ( ( y e. RR |-> ( sin ` y ) ) limCC ( r x. ( Q ` i ) ) ) ) |
| 651 |
|
fveq2 |
|- ( ( r x. x ) = ( r x. ( Q ` i ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
| 652 |
651
|
ad2antll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) = ( r x. ( Q ` i ) ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
| 653 |
643 610 647 650 635 652
|
limcco |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` i ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) limCC ( Q ` i ) ) ) |
| 654 |
584 585 586 594 598 642 653
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( sin ` ( r x. ( Q ` i ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) limCC ( Q ` i ) ) ) |
| 655 |
567 568 583 639 654
|
iblcncfioo |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
| 656 |
|
simpll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ph /\ r e. RR+ ) ) |
| 657 |
68
|
adantllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 658 |
656 657 545
|
syl2anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 659 |
567 568 655 658
|
ibliooicc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
| 660 |
552 558 559 560 566 659
|
itgspltprt |
|- ( ( ph /\ r e. RR+ ) -> S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 661 |
546 551 660
|
3eqtrd |
|- ( ( ph /\ r e. RR+ ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 662 |
519 534 661
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 663 |
505
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) e. Fin ) |
| 664 |
69
|
adantllr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
| 665 |
520
|
recnd |
|- ( r e. ( n (,) +oo ) -> r e. CC ) |
| 666 |
665
|
adantl |
|- ( ( ph /\ r e. ( n (,) +oo ) ) -> r e. CC ) |
| 667 |
666
|
ad2antrr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
| 668 |
406
|
adantllr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
| 669 |
667 668
|
mulcld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
| 670 |
669
|
sincld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
| 671 |
664 670
|
mulcld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 672 |
671
|
adantl3r |
|- ( ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
| 673 |
|
simplll |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ph ) |
| 674 |
534
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> r e. RR+ ) |
| 675 |
|
simpr |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 676 |
673 674 675 659
|
syl21anc |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
| 677 |
672 676
|
itgcl |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 678 |
663 677
|
fsumcl |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 679 |
662 678
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 680 |
679
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 681 |
680
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 682 |
681
|
abscld |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 683 |
677
|
abscld |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 684 |
663 683
|
fsumrecl |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 685 |
684
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 686 |
685
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 687 |
|
rpre |
|- ( e e. RR+ -> e e. RR ) |
| 688 |
687
|
ad2antlr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> e e. RR ) |
| 689 |
688
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> e e. RR ) |
| 690 |
662
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 691 |
663 677
|
fsumabs |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 692 |
690 691
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 693 |
692
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 694 |
693
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 695 |
505
|
a1i |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) e. Fin ) |
| 696 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 697 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 698 |
4
|
nngt0d |
|- ( ph -> 0 < M ) |
| 699 |
|
fzolb |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
| 700 |
696 697 698 699
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
| 701 |
|
ne0i |
|- ( 0 e. ( 0 ..^ M ) -> ( 0 ..^ M ) =/= (/) ) |
| 702 |
700 701
|
syl |
|- ( ph -> ( 0 ..^ M ) =/= (/) ) |
| 703 |
702
|
ad2antrr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) =/= (/) ) |
| 704 |
703
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) =/= (/) ) |
| 705 |
|
simp1l |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ph ) |
| 706 |
705
|
ad2antrr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ph ) |
| 707 |
|
simpll2 |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> n e. NN ) |
| 708 |
706 707
|
jca |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( ph /\ n e. NN ) ) |
| 709 |
|
simplr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> r e. ( n (,) +oo ) ) |
| 710 |
|
simpr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ..^ M ) ) |
| 711 |
|
eleq1w |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
| 712 |
711
|
anbi2d |
|- ( i = j -> ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) <-> ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) ) ) |
| 713 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
| 714 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 715 |
714
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
| 716 |
713 715
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ) |
| 717 |
716
|
itgeq1d |
|- ( i = j -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 718 |
717
|
eleq1d |
|- ( i = j -> ( S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC <-> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) ) |
| 719 |
712 718
|
imbi12d |
|- ( i = j -> ( ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) <-> ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) ) ) |
| 720 |
719 677
|
chvarvv |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 721 |
708 709 710 720
|
syl21anc |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
| 722 |
721
|
abscld |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
| 723 |
352
|
rpred |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. RR ) |
| 724 |
723
|
3ad2ant1 |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( e / M ) e. RR ) |
| 725 |
724
|
ad2antrr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( e / M ) e. RR ) |
| 726 |
|
simpll3 |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 727 |
|
rspa |
|- ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) -> A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 728 |
727
|
adantr |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 729 |
717
|
fveq2d |
|- ( i = j -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 730 |
729
|
breq1d |
|- ( i = j -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
| 731 |
730
|
cbvralvw |
|- ( A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 732 |
728 731
|
sylib |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 733 |
|
rspa |
|- ( ( A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 734 |
732 733
|
sylancom |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 735 |
726 709 710 734
|
syl21anc |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
| 736 |
695 704 722 725 735
|
fsumlt |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < sum_ j e. ( 0 ..^ M ) ( e / M ) ) |
| 737 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
| 738 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
| 739 |
738
|
fveq2d |
|- ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
| 740 |
737 739
|
oveq12d |
|- ( j = i -> ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
| 741 |
740
|
itgeq1d |
|- ( j = i -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 742 |
741
|
fveq2d |
|- ( j = i -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 743 |
742
|
cbvsumv |
|- sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
| 744 |
743
|
a1i |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
| 745 |
352
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. CC ) |
| 746 |
|
fsumconst |
|- ( ( ( 0 ..^ M ) e. Fin /\ ( e / M ) e. CC ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) ) |
| 747 |
505 745 746
|
sylancr |
|- ( ( ph /\ e e. RR+ ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) ) |
| 748 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 749 |
|
hashfzo0 |
|- ( M e. NN0 -> ( # ` ( 0 ..^ M ) ) = M ) |
| 750 |
748 749
|
syl |
|- ( ph -> ( # ` ( 0 ..^ M ) ) = M ) |
| 751 |
750
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) = ( M x. ( e / M ) ) ) |
| 752 |
751
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) = ( M x. ( e / M ) ) ) |
| 753 |
349
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> e e. CC ) |
| 754 |
351
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> M e. CC ) |
| 755 |
351
|
rpne0d |
|- ( ( ph /\ e e. RR+ ) -> M =/= 0 ) |
| 756 |
753 754 755
|
divcan2d |
|- ( ( ph /\ e e. RR+ ) -> ( M x. ( e / M ) ) = e ) |
| 757 |
747 752 756
|
3eqtrd |
|- ( ( ph /\ e e. RR+ ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
| 758 |
757
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
| 759 |
758
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
| 760 |
736 744 759
|
3brtr3d |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
| 761 |
682 686 689 694 760
|
lelttrd |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
| 762 |
761
|
ex |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( r e. ( n (,) +oo ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
| 763 |
518 762
|
ralrimi |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
| 764 |
763
|
3exp |
|- ( ( ph /\ e e. RR+ ) -> ( n e. NN -> ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) ) |
| 765 |
764
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( n e. NN -> ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) ) |
| 766 |
515 765
|
reximdai |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
| 767 |
512 766
|
mpd |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
| 768 |
511 767
|
syldan |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
| 769 |
768
|
ex |
|- ( ( ph /\ e e. RR+ ) -> ( A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
| 770 |
769
|
ralimdva |
|- ( ph -> ( A. e e. RR+ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. e e. RR+ E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
| 771 |
493 770
|
mpd |
|- ( ph -> A. e e. RR+ E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |