| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem31.i |
|- F/ i ph |
| 2 |
|
fourierdlem31.r |
|- F/ r ph |
| 3 |
|
fourierdlem31.iv |
|- F/_ i V |
| 4 |
|
fourierdlem31.a |
|- ( ph -> A e. Fin ) |
| 5 |
|
fourierdlem31.exm |
|- ( ph -> A. i e. A E. m e. NN A. r e. ( m (,) +oo ) ch ) |
| 6 |
|
fourierdlem31.m |
|- M = { m e. NN | A. r e. ( m (,) +oo ) ch } |
| 7 |
|
fourierdlem31.v |
|- V = ( i e. A |-> inf ( M , RR , < ) ) |
| 8 |
|
fourierdlem31.n |
|- N = sup ( ran V , RR , < ) |
| 9 |
|
1nn |
|- 1 e. NN |
| 10 |
|
rzal |
|- ( A = (/) -> A. i e. A ch ) |
| 11 |
10
|
ralrimivw |
|- ( A = (/) -> A. r e. ( 1 (,) +oo ) A. i e. A ch ) |
| 12 |
|
oveq1 |
|- ( n = 1 -> ( n (,) +oo ) = ( 1 (,) +oo ) ) |
| 13 |
12
|
raleqdv |
|- ( n = 1 -> ( A. r e. ( n (,) +oo ) A. i e. A ch <-> A. r e. ( 1 (,) +oo ) A. i e. A ch ) ) |
| 14 |
13
|
rspcev |
|- ( ( 1 e. NN /\ A. r e. ( 1 (,) +oo ) A. i e. A ch ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |
| 15 |
9 11 14
|
sylancr |
|- ( A = (/) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ A = (/) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |
| 17 |
6
|
a1i |
|- ( ( ph /\ i e. A ) -> M = { m e. NN | A. r e. ( m (,) +oo ) ch } ) |
| 18 |
17
|
infeq1d |
|- ( ( ph /\ i e. A ) -> inf ( M , RR , < ) = inf ( { m e. NN | A. r e. ( m (,) +oo ) ch } , RR , < ) ) |
| 19 |
|
ssrab2 |
|- { m e. NN | A. r e. ( m (,) +oo ) ch } C_ NN |
| 20 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 21 |
19 20
|
sseqtri |
|- { m e. NN | A. r e. ( m (,) +oo ) ch } C_ ( ZZ>= ` 1 ) |
| 22 |
5
|
r19.21bi |
|- ( ( ph /\ i e. A ) -> E. m e. NN A. r e. ( m (,) +oo ) ch ) |
| 23 |
|
rabn0 |
|- ( { m e. NN | A. r e. ( m (,) +oo ) ch } =/= (/) <-> E. m e. NN A. r e. ( m (,) +oo ) ch ) |
| 24 |
22 23
|
sylibr |
|- ( ( ph /\ i e. A ) -> { m e. NN | A. r e. ( m (,) +oo ) ch } =/= (/) ) |
| 25 |
|
infssuzcl |
|- ( ( { m e. NN | A. r e. ( m (,) +oo ) ch } C_ ( ZZ>= ` 1 ) /\ { m e. NN | A. r e. ( m (,) +oo ) ch } =/= (/) ) -> inf ( { m e. NN | A. r e. ( m (,) +oo ) ch } , RR , < ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } ) |
| 26 |
21 24 25
|
sylancr |
|- ( ( ph /\ i e. A ) -> inf ( { m e. NN | A. r e. ( m (,) +oo ) ch } , RR , < ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } ) |
| 27 |
19 26
|
sselid |
|- ( ( ph /\ i e. A ) -> inf ( { m e. NN | A. r e. ( m (,) +oo ) ch } , RR , < ) e. NN ) |
| 28 |
18 27
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> inf ( M , RR , < ) e. NN ) |
| 29 |
1 7 28
|
rnmptssd |
|- ( ph -> ran V C_ NN ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> ran V C_ NN ) |
| 31 |
|
ltso |
|- < Or RR |
| 32 |
31
|
a1i |
|- ( ( ph /\ -. A = (/) ) -> < Or RR ) |
| 33 |
|
mptfi |
|- ( A e. Fin -> ( i e. A |-> inf ( M , RR , < ) ) e. Fin ) |
| 34 |
4 33
|
syl |
|- ( ph -> ( i e. A |-> inf ( M , RR , < ) ) e. Fin ) |
| 35 |
7 34
|
eqeltrid |
|- ( ph -> V e. Fin ) |
| 36 |
|
rnfi |
|- ( V e. Fin -> ran V e. Fin ) |
| 37 |
35 36
|
syl |
|- ( ph -> ran V e. Fin ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> ran V e. Fin ) |
| 39 |
|
neqne |
|- ( -. A = (/) -> A =/= (/) ) |
| 40 |
|
n0 |
|- ( A =/= (/) <-> E. i i e. A ) |
| 41 |
39 40
|
sylib |
|- ( -. A = (/) -> E. i i e. A ) |
| 42 |
41
|
adantl |
|- ( ( ph /\ -. A = (/) ) -> E. i i e. A ) |
| 43 |
|
nfv |
|- F/ i -. A = (/) |
| 44 |
1 43
|
nfan |
|- F/ i ( ph /\ -. A = (/) ) |
| 45 |
3
|
nfrn |
|- F/_ i ran V |
| 46 |
|
nfcv |
|- F/_ i (/) |
| 47 |
45 46
|
nfne |
|- F/ i ran V =/= (/) |
| 48 |
|
simpr |
|- ( ( ph /\ i e. A ) -> i e. A ) |
| 49 |
7
|
elrnmpt1 |
|- ( ( i e. A /\ inf ( M , RR , < ) e. NN ) -> inf ( M , RR , < ) e. ran V ) |
| 50 |
48 28 49
|
syl2anc |
|- ( ( ph /\ i e. A ) -> inf ( M , RR , < ) e. ran V ) |
| 51 |
50
|
ne0d |
|- ( ( ph /\ i e. A ) -> ran V =/= (/) ) |
| 52 |
51
|
ex |
|- ( ph -> ( i e. A -> ran V =/= (/) ) ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> ( i e. A -> ran V =/= (/) ) ) |
| 54 |
44 47 53
|
exlimd |
|- ( ( ph /\ -. A = (/) ) -> ( E. i i e. A -> ran V =/= (/) ) ) |
| 55 |
42 54
|
mpd |
|- ( ( ph /\ -. A = (/) ) -> ran V =/= (/) ) |
| 56 |
|
nnssre |
|- NN C_ RR |
| 57 |
30 56
|
sstrdi |
|- ( ( ph /\ -. A = (/) ) -> ran V C_ RR ) |
| 58 |
|
fisupcl |
|- ( ( < Or RR /\ ( ran V e. Fin /\ ran V =/= (/) /\ ran V C_ RR ) ) -> sup ( ran V , RR , < ) e. ran V ) |
| 59 |
32 38 55 57 58
|
syl13anc |
|- ( ( ph /\ -. A = (/) ) -> sup ( ran V , RR , < ) e. ran V ) |
| 60 |
30 59
|
sseldd |
|- ( ( ph /\ -. A = (/) ) -> sup ( ran V , RR , < ) e. NN ) |
| 61 |
8 60
|
eqeltrid |
|- ( ( ph /\ -. A = (/) ) -> N e. NN ) |
| 62 |
|
nfcv |
|- F/_ i RR |
| 63 |
|
nfcv |
|- F/_ i < |
| 64 |
45 62 63
|
nfsup |
|- F/_ i sup ( ran V , RR , < ) |
| 65 |
8 64
|
nfcxfr |
|- F/_ i N |
| 66 |
|
nfcv |
|- F/_ i (,) |
| 67 |
|
nfcv |
|- F/_ i +oo |
| 68 |
65 66 67
|
nfov |
|- F/_ i ( N (,) +oo ) |
| 69 |
68
|
nfcri |
|- F/ i r e. ( N (,) +oo ) |
| 70 |
1 69
|
nfan |
|- F/ i ( ph /\ r e. ( N (,) +oo ) ) |
| 71 |
7
|
fvmpt2 |
|- ( ( i e. A /\ inf ( M , RR , < ) e. NN ) -> ( V ` i ) = inf ( M , RR , < ) ) |
| 72 |
48 28 71
|
syl2anc |
|- ( ( ph /\ i e. A ) -> ( V ` i ) = inf ( M , RR , < ) ) |
| 73 |
28
|
nnxrd |
|- ( ( ph /\ i e. A ) -> inf ( M , RR , < ) e. RR* ) |
| 74 |
72 73
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> ( V ` i ) e. RR* ) |
| 75 |
74
|
adantr |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> ( V ` i ) e. RR* ) |
| 76 |
|
pnfxr |
|- +oo e. RR* |
| 77 |
76
|
a1i |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> +oo e. RR* ) |
| 78 |
|
elioore |
|- ( r e. ( N (,) +oo ) -> r e. RR ) |
| 79 |
78
|
adantl |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> r e. RR ) |
| 80 |
72 28
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> ( V ` i ) e. NN ) |
| 81 |
80
|
nnred |
|- ( ( ph /\ i e. A ) -> ( V ` i ) e. RR ) |
| 82 |
81
|
adantr |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> ( V ` i ) e. RR ) |
| 83 |
|
ne0i |
|- ( i e. A -> A =/= (/) ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ i e. A ) -> A =/= (/) ) |
| 85 |
84
|
neneqd |
|- ( ( ph /\ i e. A ) -> -. A = (/) ) |
| 86 |
85 61
|
syldan |
|- ( ( ph /\ i e. A ) -> N e. NN ) |
| 87 |
86
|
nnred |
|- ( ( ph /\ i e. A ) -> N e. RR ) |
| 88 |
87
|
adantr |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> N e. RR ) |
| 89 |
85 57
|
syldan |
|- ( ( ph /\ i e. A ) -> ran V C_ RR ) |
| 90 |
29 56
|
sstrdi |
|- ( ph -> ran V C_ RR ) |
| 91 |
|
fimaxre2 |
|- ( ( ran V C_ RR /\ ran V e. Fin ) -> E. x e. RR A. y e. ran V y <_ x ) |
| 92 |
90 37 91
|
syl2anc |
|- ( ph -> E. x e. RR A. y e. ran V y <_ x ) |
| 93 |
92
|
adantr |
|- ( ( ph /\ i e. A ) -> E. x e. RR A. y e. ran V y <_ x ) |
| 94 |
72 50
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> ( V ` i ) e. ran V ) |
| 95 |
|
suprub |
|- ( ( ( ran V C_ RR /\ ran V =/= (/) /\ E. x e. RR A. y e. ran V y <_ x ) /\ ( V ` i ) e. ran V ) -> ( V ` i ) <_ sup ( ran V , RR , < ) ) |
| 96 |
89 51 93 94 95
|
syl31anc |
|- ( ( ph /\ i e. A ) -> ( V ` i ) <_ sup ( ran V , RR , < ) ) |
| 97 |
96 8
|
breqtrrdi |
|- ( ( ph /\ i e. A ) -> ( V ` i ) <_ N ) |
| 98 |
97
|
adantr |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> ( V ` i ) <_ N ) |
| 99 |
88
|
rexrd |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> N e. RR* ) |
| 100 |
|
simpr |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> r e. ( N (,) +oo ) ) |
| 101 |
|
ioogtlb |
|- ( ( N e. RR* /\ +oo e. RR* /\ r e. ( N (,) +oo ) ) -> N < r ) |
| 102 |
99 77 100 101
|
syl3anc |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> N < r ) |
| 103 |
82 88 79 98 102
|
lelttrd |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> ( V ` i ) < r ) |
| 104 |
79
|
ltpnfd |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> r < +oo ) |
| 105 |
75 77 79 103 104
|
eliood |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> r e. ( ( V ` i ) (,) +oo ) ) |
| 106 |
18 26
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> inf ( M , RR , < ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } ) |
| 107 |
72 106
|
eqeltrd |
|- ( ( ph /\ i e. A ) -> ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } ) |
| 108 |
|
nfcv |
|- F/_ m A |
| 109 |
|
nfrab1 |
|- F/_ m { m e. NN | A. r e. ( m (,) +oo ) ch } |
| 110 |
6 109
|
nfcxfr |
|- F/_ m M |
| 111 |
|
nfcv |
|- F/_ m RR |
| 112 |
|
nfcv |
|- F/_ m < |
| 113 |
110 111 112
|
nfinf |
|- F/_ m inf ( M , RR , < ) |
| 114 |
108 113
|
nfmpt |
|- F/_ m ( i e. A |-> inf ( M , RR , < ) ) |
| 115 |
7 114
|
nfcxfr |
|- F/_ m V |
| 116 |
|
nfcv |
|- F/_ m i |
| 117 |
115 116
|
nffv |
|- F/_ m ( V ` i ) |
| 118 |
117 109
|
nfel |
|- F/ m ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } |
| 119 |
117
|
nfel1 |
|- F/ m ( V ` i ) e. NN |
| 120 |
|
nfcv |
|- F/_ m (,) |
| 121 |
|
nfcv |
|- F/_ m +oo |
| 122 |
117 120 121
|
nfov |
|- F/_ m ( ( V ` i ) (,) +oo ) |
| 123 |
|
nfv |
|- F/ m ch |
| 124 |
122 123
|
nfralw |
|- F/ m A. r e. ( ( V ` i ) (,) +oo ) ch |
| 125 |
119 124
|
nfan |
|- F/ m ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) |
| 126 |
118 125
|
nfbi |
|- F/ m ( ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) |
| 127 |
|
eleq1 |
|- ( m = ( V ` i ) -> ( m e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } ) ) |
| 128 |
|
eleq1 |
|- ( m = ( V ` i ) -> ( m e. NN <-> ( V ` i ) e. NN ) ) |
| 129 |
|
oveq1 |
|- ( m = ( V ` i ) -> ( m (,) +oo ) = ( ( V ` i ) (,) +oo ) ) |
| 130 |
|
nfcv |
|- F/_ r ( m (,) +oo ) |
| 131 |
|
nfcv |
|- F/_ r A |
| 132 |
|
nfra1 |
|- F/ r A. r e. ( m (,) +oo ) ch |
| 133 |
|
nfcv |
|- F/_ r NN |
| 134 |
132 133
|
nfrabw |
|- F/_ r { m e. NN | A. r e. ( m (,) +oo ) ch } |
| 135 |
6 134
|
nfcxfr |
|- F/_ r M |
| 136 |
|
nfcv |
|- F/_ r RR |
| 137 |
|
nfcv |
|- F/_ r < |
| 138 |
135 136 137
|
nfinf |
|- F/_ r inf ( M , RR , < ) |
| 139 |
131 138
|
nfmpt |
|- F/_ r ( i e. A |-> inf ( M , RR , < ) ) |
| 140 |
7 139
|
nfcxfr |
|- F/_ r V |
| 141 |
|
nfcv |
|- F/_ r i |
| 142 |
140 141
|
nffv |
|- F/_ r ( V ` i ) |
| 143 |
|
nfcv |
|- F/_ r (,) |
| 144 |
|
nfcv |
|- F/_ r +oo |
| 145 |
142 143 144
|
nfov |
|- F/_ r ( ( V ` i ) (,) +oo ) |
| 146 |
130 145
|
raleqf |
|- ( ( m (,) +oo ) = ( ( V ` i ) (,) +oo ) -> ( A. r e. ( m (,) +oo ) ch <-> A. r e. ( ( V ` i ) (,) +oo ) ch ) ) |
| 147 |
129 146
|
syl |
|- ( m = ( V ` i ) -> ( A. r e. ( m (,) +oo ) ch <-> A. r e. ( ( V ` i ) (,) +oo ) ch ) ) |
| 148 |
128 147
|
anbi12d |
|- ( m = ( V ` i ) -> ( ( m e. NN /\ A. r e. ( m (,) +oo ) ch ) <-> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) ) |
| 149 |
127 148
|
bibi12d |
|- ( m = ( V ` i ) -> ( ( m e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( m e. NN /\ A. r e. ( m (,) +oo ) ch ) ) <-> ( ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) ) ) |
| 150 |
|
rabid |
|- ( m e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( m e. NN /\ A. r e. ( m (,) +oo ) ch ) ) |
| 151 |
117 126 149 150
|
vtoclgf |
|- ( ( V ` i ) e. NN -> ( ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) ) |
| 152 |
80 151
|
syl |
|- ( ( ph /\ i e. A ) -> ( ( V ` i ) e. { m e. NN | A. r e. ( m (,) +oo ) ch } <-> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) ) |
| 153 |
107 152
|
mpbid |
|- ( ( ph /\ i e. A ) -> ( ( V ` i ) e. NN /\ A. r e. ( ( V ` i ) (,) +oo ) ch ) ) |
| 154 |
153
|
simprd |
|- ( ( ph /\ i e. A ) -> A. r e. ( ( V ` i ) (,) +oo ) ch ) |
| 155 |
154
|
r19.21bi |
|- ( ( ( ph /\ i e. A ) /\ r e. ( ( V ` i ) (,) +oo ) ) -> ch ) |
| 156 |
105 155
|
syldan |
|- ( ( ( ph /\ i e. A ) /\ r e. ( N (,) +oo ) ) -> ch ) |
| 157 |
156
|
an32s |
|- ( ( ( ph /\ r e. ( N (,) +oo ) ) /\ i e. A ) -> ch ) |
| 158 |
157
|
ex |
|- ( ( ph /\ r e. ( N (,) +oo ) ) -> ( i e. A -> ch ) ) |
| 159 |
70 158
|
ralrimi |
|- ( ( ph /\ r e. ( N (,) +oo ) ) -> A. i e. A ch ) |
| 160 |
159
|
ex |
|- ( ph -> ( r e. ( N (,) +oo ) -> A. i e. A ch ) ) |
| 161 |
2 160
|
ralrimi |
|- ( ph -> A. r e. ( N (,) +oo ) A. i e. A ch ) |
| 162 |
161
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> A. r e. ( N (,) +oo ) A. i e. A ch ) |
| 163 |
|
oveq1 |
|- ( n = N -> ( n (,) +oo ) = ( N (,) +oo ) ) |
| 164 |
|
nfcv |
|- F/_ r ( n (,) +oo ) |
| 165 |
140
|
nfrn |
|- F/_ r ran V |
| 166 |
165 136 137
|
nfsup |
|- F/_ r sup ( ran V , RR , < ) |
| 167 |
8 166
|
nfcxfr |
|- F/_ r N |
| 168 |
167 143 144
|
nfov |
|- F/_ r ( N (,) +oo ) |
| 169 |
164 168
|
raleqf |
|- ( ( n (,) +oo ) = ( N (,) +oo ) -> ( A. r e. ( n (,) +oo ) A. i e. A ch <-> A. r e. ( N (,) +oo ) A. i e. A ch ) ) |
| 170 |
163 169
|
syl |
|- ( n = N -> ( A. r e. ( n (,) +oo ) A. i e. A ch <-> A. r e. ( N (,) +oo ) A. i e. A ch ) ) |
| 171 |
170
|
rspcev |
|- ( ( N e. NN /\ A. r e. ( N (,) +oo ) A. i e. A ch ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |
| 172 |
61 162 171
|
syl2anc |
|- ( ( ph /\ -. A = (/) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |
| 173 |
16 172
|
pm2.61dan |
|- ( ph -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. A ch ) |