Metamath Proof Explorer


Theorem fourierdlem31

Description: If A is finite and for any element in A there is a number m such that a property holds for all numbers larger than m , then there is a number n such that the property holds for all numbers larger than n and for all elements in A . (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem31.i 𝑖 𝜑
fourierdlem31.r 𝑟 𝜑
fourierdlem31.iv 𝑖 𝑉
fourierdlem31.a ( 𝜑𝐴 ∈ Fin )
fourierdlem31.exm ( 𝜑 → ∀ 𝑖𝐴𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
fourierdlem31.m 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
fourierdlem31.v 𝑉 = ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
fourierdlem31.n 𝑁 = sup ( ran 𝑉 , ℝ , < )
Assertion fourierdlem31 ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )

Proof

Step Hyp Ref Expression
1 fourierdlem31.i 𝑖 𝜑
2 fourierdlem31.r 𝑟 𝜑
3 fourierdlem31.iv 𝑖 𝑉
4 fourierdlem31.a ( 𝜑𝐴 ∈ Fin )
5 fourierdlem31.exm ( 𝜑 → ∀ 𝑖𝐴𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
6 fourierdlem31.m 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
7 fourierdlem31.v 𝑉 = ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
8 fourierdlem31.n 𝑁 = sup ( ran 𝑉 , ℝ , < )
9 1nn 1 ∈ ℕ
10 rzal ( 𝐴 = ∅ → ∀ 𝑖𝐴 𝜒 )
11 10 ralrimivw ( 𝐴 = ∅ → ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
12 oveq1 ( 𝑛 = 1 → ( 𝑛 (,) +∞ ) = ( 1 (,) +∞ ) )
13 12 raleqdv ( 𝑛 = 1 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
14 13 rspcev ( ( 1 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
15 9 11 14 sylancr ( 𝐴 = ∅ → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
16 15 adantl ( ( 𝜑𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
17 6 a1i ( ( 𝜑𝑖𝐴 ) → 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
18 17 infeq1d ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) )
19 ssrab2 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ℕ
20 nnuz ℕ = ( ℤ ‘ 1 )
21 19 20 sseqtri { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ ‘ 1 )
22 5 r19.21bi ( ( 𝜑𝑖𝐴 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
23 rabn0 ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 )
24 22 23 sylibr ( ( 𝜑𝑖𝐴 ) → { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ )
25 infssuzcl ( ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ ‘ 1 ) ∧ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
26 21 24 25 sylancr ( ( 𝜑𝑖𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
27 19 26 sseldi ( ( 𝜑𝑖𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ ℕ )
28 18 27 eqeltrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℕ )
29 1 7 28 rnmptssd ( 𝜑 → ran 𝑉 ⊆ ℕ )
30 29 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℕ )
31 ltso < Or ℝ
32 31 a1i ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → < Or ℝ )
33 mptfi ( 𝐴 ∈ Fin → ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin )
34 4 33 syl ( 𝜑 → ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin )
35 7 34 eqeltrid ( 𝜑𝑉 ∈ Fin )
36 rnfi ( 𝑉 ∈ Fin → ran 𝑉 ∈ Fin )
37 35 36 syl ( 𝜑 → ran 𝑉 ∈ Fin )
38 37 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ∈ Fin )
39 neqne ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
40 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑖 𝑖𝐴 )
41 39 40 sylib ( ¬ 𝐴 = ∅ → ∃ 𝑖 𝑖𝐴 )
42 41 adantl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑖 𝑖𝐴 )
43 nfv 𝑖 ¬ 𝐴 = ∅
44 1 43 nfan 𝑖 ( 𝜑 ∧ ¬ 𝐴 = ∅ )
45 3 nfrn 𝑖 ran 𝑉
46 nfcv 𝑖
47 45 46 nfne 𝑖 ran 𝑉 ≠ ∅
48 simpr ( ( 𝜑𝑖𝐴 ) → 𝑖𝐴 )
49 7 elrnmpt1 ( ( 𝑖𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 )
50 48 28 49 syl2anc ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 )
51 50 ne0d ( ( 𝜑𝑖𝐴 ) → ran 𝑉 ≠ ∅ )
52 51 ex ( 𝜑 → ( 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
53 52 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
54 44 47 53 exlimd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( ∃ 𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅ ) )
55 42 54 mpd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ≠ ∅ )
56 nnssre ℕ ⊆ ℝ
57 30 56 sstrdi ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℝ )
58 fisupcl ( ( < Or ℝ ∧ ( ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ ) ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 )
59 32 38 55 57 58 syl13anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 )
60 30 59 sseldd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ℕ )
61 8 60 eqeltrid ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑁 ∈ ℕ )
62 nfcv 𝑖
63 nfcv 𝑖 <
64 45 62 63 nfsup 𝑖 sup ( ran 𝑉 , ℝ , < )
65 8 64 nfcxfr 𝑖 𝑁
66 nfcv 𝑖 (,)
67 nfcv 𝑖 +∞
68 65 66 67 nfov 𝑖 ( 𝑁 (,) +∞ )
69 68 nfcri 𝑖 𝑟 ∈ ( 𝑁 (,) +∞ )
70 1 69 nfan 𝑖 ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) )
71 7 fvmpt2 ( ( 𝑖𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → ( 𝑉𝑖 ) = inf ( 𝑀 , ℝ , < ) )
72 48 28 71 syl2anc ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) = inf ( 𝑀 , ℝ , < ) )
73 28 nnxrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℝ* )
74 72 73 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℝ* )
75 74 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ∈ ℝ* )
76 pnfxr +∞ ∈ ℝ*
77 76 a1i ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → +∞ ∈ ℝ* )
78 elioore ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → 𝑟 ∈ ℝ )
79 78 adantl ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ℝ )
80 72 28 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℕ )
81 80 nnred ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ℝ )
82 81 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ∈ ℝ )
83 ne0i ( 𝑖𝐴𝐴 ≠ ∅ )
84 83 adantl ( ( 𝜑𝑖𝐴 ) → 𝐴 ≠ ∅ )
85 84 neneqd ( ( 𝜑𝑖𝐴 ) → ¬ 𝐴 = ∅ )
86 85 61 syldan ( ( 𝜑𝑖𝐴 ) → 𝑁 ∈ ℕ )
87 86 nnred ( ( 𝜑𝑖𝐴 ) → 𝑁 ∈ ℝ )
88 87 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ )
89 85 57 syldan ( ( 𝜑𝑖𝐴 ) → ran 𝑉 ⊆ ℝ )
90 29 56 sstrdi ( 𝜑 → ran 𝑉 ⊆ ℝ )
91 fimaxre2 ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
92 90 37 91 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
93 92 adantr ( ( 𝜑𝑖𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 )
94 72 50 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ ran 𝑉 )
95 suprub ( ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦𝑥 ) ∧ ( 𝑉𝑖 ) ∈ ran 𝑉 ) → ( 𝑉𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) )
96 89 51 93 94 95 syl31anc ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) )
97 96 8 breqtrrdi ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ≤ 𝑁 )
98 97 adantr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) ≤ 𝑁 )
99 88 rexrd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ* )
100 simpr ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( 𝑁 (,) +∞ ) )
101 ioogtlb ( ( 𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 )
102 99 77 100 101 syl3anc ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 )
103 82 88 79 98 102 lelttrd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉𝑖 ) < 𝑟 )
104 79 ltpnfd ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 < +∞ )
105 75 77 79 103 104 eliood ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) )
106 18 26 eqeltrd ( ( 𝜑𝑖𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
107 72 106 eqeltrd ( ( 𝜑𝑖𝐴 ) → ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } )
108 nfcv 𝑚 𝐴
109 nfrab1 𝑚 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
110 6 109 nfcxfr 𝑚 𝑀
111 nfcv 𝑚
112 nfcv 𝑚 <
113 110 111 112 nfinf 𝑚 inf ( 𝑀 , ℝ , < )
114 108 113 nfmpt 𝑚 ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
115 7 114 nfcxfr 𝑚 𝑉
116 nfcv 𝑚 𝑖
117 115 116 nffv 𝑚 ( 𝑉𝑖 )
118 117 109 nfel 𝑚 ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
119 117 nfel1 𝑚 ( 𝑉𝑖 ) ∈ ℕ
120 nfcv 𝑚 (,)
121 nfcv 𝑚 +∞
122 117 120 121 nfov 𝑚 ( ( 𝑉𝑖 ) (,) +∞ )
123 nfv 𝑚 𝜒
124 122 123 nfralw 𝑚𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒
125 119 124 nfan 𝑚 ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 )
126 118 125 nfbi 𝑚 ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
127 eleq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) )
128 eleq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 ∈ ℕ ↔ ( 𝑉𝑖 ) ∈ ℕ ) )
129 oveq1 ( 𝑚 = ( 𝑉𝑖 ) → ( 𝑚 (,) +∞ ) = ( ( 𝑉𝑖 ) (,) +∞ ) )
130 nfcv 𝑟 ( 𝑚 (,) +∞ )
131 nfcv 𝑟 𝐴
132 nfra1 𝑟𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒
133 nfcv 𝑟
134 132 133 nfrabw 𝑟 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 }
135 6 134 nfcxfr 𝑟 𝑀
136 nfcv 𝑟
137 nfcv 𝑟 <
138 135 136 137 nfinf 𝑟 inf ( 𝑀 , ℝ , < )
139 131 138 nfmpt 𝑟 ( 𝑖𝐴 ↦ inf ( 𝑀 , ℝ , < ) )
140 7 139 nfcxfr 𝑟 𝑉
141 nfcv 𝑟 𝑖
142 140 141 nffv 𝑟 ( 𝑉𝑖 )
143 nfcv 𝑟 (,)
144 nfcv 𝑟 +∞
145 142 143 144 nfov 𝑟 ( ( 𝑉𝑖 ) (,) +∞ )
146 130 145 raleqf ( ( 𝑚 (,) +∞ ) = ( ( 𝑉𝑖 ) (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
147 129 146 syl ( 𝑚 = ( 𝑉𝑖 ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
148 128 147 anbi12d ( 𝑚 = ( 𝑉𝑖 ) → ( ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
149 127 148 bibi12d ( 𝑚 = ( 𝑉𝑖 ) → ( ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) ↔ ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) ) )
150 rabid ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) )
151 117 126 149 150 vtoclgf ( ( 𝑉𝑖 ) ∈ ℕ → ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
152 80 151 syl ( ( 𝜑𝑖𝐴 ) → ( ( 𝑉𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) ) )
153 107 152 mpbid ( ( 𝜑𝑖𝐴 ) → ( ( 𝑉𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 ) )
154 153 simprd ( ( 𝜑𝑖𝐴 ) → ∀ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) 𝜒 )
155 154 r19.21bi ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( ( 𝑉𝑖 ) (,) +∞ ) ) → 𝜒 )
156 105 155 syldan ( ( ( 𝜑𝑖𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝜒 )
157 156 an32s ( ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) ∧ 𝑖𝐴 ) → 𝜒 )
158 157 ex ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑖𝐴𝜒 ) )
159 70 158 ralrimi ( ( 𝜑𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ∀ 𝑖𝐴 𝜒 )
160 159 ex ( 𝜑 → ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → ∀ 𝑖𝐴 𝜒 ) )
161 2 160 ralrimi ( 𝜑 → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
162 161 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
163 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) )
164 nfcv 𝑟 ( 𝑛 (,) +∞ )
165 140 nfrn 𝑟 ran 𝑉
166 165 136 137 nfsup 𝑟 sup ( ran 𝑉 , ℝ , < )
167 8 166 nfcxfr 𝑟 𝑁
168 167 143 144 nfov 𝑟 ( 𝑁 (,) +∞ )
169 164 168 raleqf ( ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
170 163 169 syl ( 𝑛 = 𝑁 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) )
171 170 rspcev ( ( 𝑁 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
172 61 162 171 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )
173 16 172 pm2.61dan ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖𝐴 𝜒 )