| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem31.i |
⊢ Ⅎ 𝑖 𝜑 |
| 2 |
|
fourierdlem31.r |
⊢ Ⅎ 𝑟 𝜑 |
| 3 |
|
fourierdlem31.iv |
⊢ Ⅎ 𝑖 𝑉 |
| 4 |
|
fourierdlem31.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
fourierdlem31.exm |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐴 ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
| 6 |
|
fourierdlem31.m |
⊢ 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
| 7 |
|
fourierdlem31.v |
⊢ 𝑉 = ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
| 8 |
|
fourierdlem31.n |
⊢ 𝑁 = sup ( ran 𝑉 , ℝ , < ) |
| 9 |
|
1nn |
⊢ 1 ∈ ℕ |
| 10 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 11 |
10
|
ralrimivw |
⊢ ( 𝐴 = ∅ → ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 12 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 (,) +∞ ) = ( 1 (,) +∞ ) ) |
| 13 |
12
|
raleqdv |
⊢ ( 𝑛 = 1 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
| 14 |
13
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 1 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 15 |
9 11 14
|
sylancr |
⊢ ( 𝐴 = ∅ → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 17 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑀 = { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
| 18 |
17
|
infeq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ) |
| 19 |
|
ssrab2 |
⊢ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ℕ |
| 20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 21 |
19 20
|
sseqtri |
⊢ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ≥ ‘ 1 ) |
| 22 |
5
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
| 23 |
|
rabn0 |
⊢ ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ↔ ∃ 𝑚 ∈ ℕ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) |
| 24 |
22 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) |
| 25 |
|
infssuzcl |
⊢ ( ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ≠ ∅ ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
| 26 |
21 24 25
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
| 27 |
19 26
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } , ℝ , < ) ∈ ℕ ) |
| 28 |
18 27
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℕ ) |
| 29 |
1 7 28
|
rnmptssd |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℕ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℕ ) |
| 31 |
|
ltso |
⊢ < Or ℝ |
| 32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → < Or ℝ ) |
| 33 |
|
mptfi |
⊢ ( 𝐴 ∈ Fin → ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin ) |
| 34 |
4 33
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) ∈ Fin ) |
| 35 |
7 34
|
eqeltrid |
⊢ ( 𝜑 → 𝑉 ∈ Fin ) |
| 36 |
|
rnfi |
⊢ ( 𝑉 ∈ Fin → ran 𝑉 ∈ Fin ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → ran 𝑉 ∈ Fin ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ∈ Fin ) |
| 39 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
| 40 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝐴 ) |
| 41 |
39 40
|
sylib |
⊢ ( ¬ 𝐴 = ∅ → ∃ 𝑖 𝑖 ∈ 𝐴 ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑖 𝑖 ∈ 𝐴 ) |
| 43 |
|
nfv |
⊢ Ⅎ 𝑖 ¬ 𝐴 = ∅ |
| 44 |
1 43
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ¬ 𝐴 = ∅ ) |
| 45 |
3
|
nfrn |
⊢ Ⅎ 𝑖 ran 𝑉 |
| 46 |
|
nfcv |
⊢ Ⅎ 𝑖 ∅ |
| 47 |
45 46
|
nfne |
⊢ Ⅎ 𝑖 ran 𝑉 ≠ ∅ |
| 48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑖 ∈ 𝐴 ) |
| 49 |
7
|
elrnmpt1 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 ) |
| 50 |
48 28 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ran 𝑉 ) |
| 51 |
50
|
ne0d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ran 𝑉 ≠ ∅ ) |
| 52 |
51
|
ex |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
| 54 |
44 47 53
|
exlimd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ( ∃ 𝑖 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅ ) ) |
| 55 |
42 54
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ≠ ∅ ) |
| 56 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 57 |
30 56
|
sstrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ran 𝑉 ⊆ ℝ ) |
| 58 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ ) ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 ) |
| 59 |
32 38 55 57 58
|
syl13anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ran 𝑉 ) |
| 60 |
30 59
|
sseldd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( ran 𝑉 , ℝ , < ) ∈ ℕ ) |
| 61 |
8 60
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝑁 ∈ ℕ ) |
| 62 |
|
nfcv |
⊢ Ⅎ 𝑖 ℝ |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑖 < |
| 64 |
45 62 63
|
nfsup |
⊢ Ⅎ 𝑖 sup ( ran 𝑉 , ℝ , < ) |
| 65 |
8 64
|
nfcxfr |
⊢ Ⅎ 𝑖 𝑁 |
| 66 |
|
nfcv |
⊢ Ⅎ 𝑖 (,) |
| 67 |
|
nfcv |
⊢ Ⅎ 𝑖 +∞ |
| 68 |
65 66 67
|
nfov |
⊢ Ⅎ 𝑖 ( 𝑁 (,) +∞ ) |
| 69 |
68
|
nfcri |
⊢ Ⅎ 𝑖 𝑟 ∈ ( 𝑁 (,) +∞ ) |
| 70 |
1 69
|
nfan |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) |
| 71 |
7
|
fvmpt2 |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ inf ( 𝑀 , ℝ , < ) ∈ ℕ ) → ( 𝑉 ‘ 𝑖 ) = inf ( 𝑀 , ℝ , < ) ) |
| 72 |
48 28 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) = inf ( 𝑀 , ℝ , < ) ) |
| 73 |
28
|
nnxrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ ℝ* ) |
| 74 |
72 73
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ* ) |
| 76 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 77 |
76
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → +∞ ∈ ℝ* ) |
| 78 |
|
elioore |
⊢ ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → 𝑟 ∈ ℝ ) |
| 79 |
78
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ℝ ) |
| 80 |
72 28
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℕ ) |
| 81 |
80
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ∈ ℝ ) |
| 83 |
|
ne0i |
⊢ ( 𝑖 ∈ 𝐴 → 𝐴 ≠ ∅ ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 85 |
84
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ¬ 𝐴 = ∅ ) |
| 86 |
85 61
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑁 ∈ ℕ ) |
| 87 |
86
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → 𝑁 ∈ ℝ ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ ) |
| 89 |
85 57
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ran 𝑉 ⊆ ℝ ) |
| 90 |
29 56
|
sstrdi |
⊢ ( 𝜑 → ran 𝑉 ⊆ ℝ ) |
| 91 |
|
fimaxre2 |
⊢ ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
| 92 |
90 37 91
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) |
| 94 |
72 50
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ ran 𝑉 ) |
| 95 |
|
suprub |
⊢ ( ( ( ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥 ) ∧ ( 𝑉 ‘ 𝑖 ) ∈ ran 𝑉 ) → ( 𝑉 ‘ 𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) ) |
| 96 |
89 51 93 94 95
|
syl31anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ≤ sup ( ran 𝑉 , ℝ , < ) ) |
| 97 |
96 8
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ≤ 𝑁 ) |
| 98 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) ≤ 𝑁 ) |
| 99 |
88
|
rexrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 ∈ ℝ* ) |
| 100 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( 𝑁 (,) +∞ ) ) |
| 101 |
|
ioogtlb |
⊢ ( ( 𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 ) |
| 102 |
99 77 100 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑁 < 𝑟 ) |
| 103 |
82 88 79 98 102
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑉 ‘ 𝑖 ) < 𝑟 ) |
| 104 |
79
|
ltpnfd |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 < +∞ ) |
| 105 |
75 77 79 103 104
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) |
| 106 |
18 26
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → inf ( 𝑀 , ℝ , < ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
| 107 |
72 106
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) |
| 108 |
|
nfcv |
⊢ Ⅎ 𝑚 𝐴 |
| 109 |
|
nfrab1 |
⊢ Ⅎ 𝑚 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
| 110 |
6 109
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑀 |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑚 ℝ |
| 112 |
|
nfcv |
⊢ Ⅎ 𝑚 < |
| 113 |
110 111 112
|
nfinf |
⊢ Ⅎ 𝑚 inf ( 𝑀 , ℝ , < ) |
| 114 |
108 113
|
nfmpt |
⊢ Ⅎ 𝑚 ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
| 115 |
7 114
|
nfcxfr |
⊢ Ⅎ 𝑚 𝑉 |
| 116 |
|
nfcv |
⊢ Ⅎ 𝑚 𝑖 |
| 117 |
115 116
|
nffv |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) |
| 118 |
117 109
|
nfel |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
| 119 |
117
|
nfel1 |
⊢ Ⅎ 𝑚 ( 𝑉 ‘ 𝑖 ) ∈ ℕ |
| 120 |
|
nfcv |
⊢ Ⅎ 𝑚 (,) |
| 121 |
|
nfcv |
⊢ Ⅎ 𝑚 +∞ |
| 122 |
117 120 121
|
nfov |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) |
| 123 |
|
nfv |
⊢ Ⅎ 𝑚 𝜒 |
| 124 |
122 123
|
nfralw |
⊢ Ⅎ 𝑚 ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 |
| 125 |
119 124
|
nfan |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) |
| 126 |
118 125
|
nfbi |
⊢ Ⅎ 𝑚 ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
| 127 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ) ) |
| 128 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 ∈ ℕ ↔ ( 𝑉 ‘ 𝑖 ) ∈ ℕ ) ) |
| 129 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( 𝑚 (,) +∞ ) = ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) |
| 130 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑚 (,) +∞ ) |
| 131 |
|
nfcv |
⊢ Ⅎ 𝑟 𝐴 |
| 132 |
|
nfra1 |
⊢ Ⅎ 𝑟 ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 |
| 133 |
|
nfcv |
⊢ Ⅎ 𝑟 ℕ |
| 134 |
132 133
|
nfrabw |
⊢ Ⅎ 𝑟 { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } |
| 135 |
6 134
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑀 |
| 136 |
|
nfcv |
⊢ Ⅎ 𝑟 ℝ |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑟 < |
| 138 |
135 136 137
|
nfinf |
⊢ Ⅎ 𝑟 inf ( 𝑀 , ℝ , < ) |
| 139 |
131 138
|
nfmpt |
⊢ Ⅎ 𝑟 ( 𝑖 ∈ 𝐴 ↦ inf ( 𝑀 , ℝ , < ) ) |
| 140 |
7 139
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑉 |
| 141 |
|
nfcv |
⊢ Ⅎ 𝑟 𝑖 |
| 142 |
140 141
|
nffv |
⊢ Ⅎ 𝑟 ( 𝑉 ‘ 𝑖 ) |
| 143 |
|
nfcv |
⊢ Ⅎ 𝑟 (,) |
| 144 |
|
nfcv |
⊢ Ⅎ 𝑟 +∞ |
| 145 |
142 143 144
|
nfov |
⊢ Ⅎ 𝑟 ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) |
| 146 |
130 145
|
raleqf |
⊢ ( ( 𝑚 (,) +∞ ) = ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
| 147 |
129 146
|
syl |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ↔ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
| 148 |
128 147
|
anbi12d |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
| 149 |
127 148
|
bibi12d |
⊢ ( 𝑚 = ( 𝑉 ‘ 𝑖 ) → ( ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) ) |
| 150 |
|
rabid |
⊢ ( 𝑚 ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( 𝑚 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 ) ) |
| 151 |
117 126 149 150
|
vtoclgf |
⊢ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ → ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
| 152 |
80 151
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑉 ‘ 𝑖 ) ∈ { 𝑚 ∈ ℕ ∣ ∀ 𝑟 ∈ ( 𝑚 (,) +∞ ) 𝜒 } ↔ ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) ) |
| 153 |
107 152
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ( ( 𝑉 ‘ 𝑖 ) ∈ ℕ ∧ ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) ) |
| 154 |
153
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) → ∀ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) 𝜒 ) |
| 155 |
154
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( ( 𝑉 ‘ 𝑖 ) (,) +∞ ) ) → 𝜒 ) |
| 156 |
105 155
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐴 ) ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → 𝜒 ) |
| 157 |
156
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) ∧ 𝑖 ∈ 𝐴 ) → 𝜒 ) |
| 158 |
157
|
ex |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ( 𝑖 ∈ 𝐴 → 𝜒 ) ) |
| 159 |
70 158
|
ralrimi |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( 𝑁 (,) +∞ ) ) → ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 160 |
159
|
ex |
⊢ ( 𝜑 → ( 𝑟 ∈ ( 𝑁 (,) +∞ ) → ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
| 161 |
2 160
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 163 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) ) |
| 164 |
|
nfcv |
⊢ Ⅎ 𝑟 ( 𝑛 (,) +∞ ) |
| 165 |
140
|
nfrn |
⊢ Ⅎ 𝑟 ran 𝑉 |
| 166 |
165 136 137
|
nfsup |
⊢ Ⅎ 𝑟 sup ( ran 𝑉 , ℝ , < ) |
| 167 |
8 166
|
nfcxfr |
⊢ Ⅎ 𝑟 𝑁 |
| 168 |
167 143 144
|
nfov |
⊢ Ⅎ 𝑟 ( 𝑁 (,) +∞ ) |
| 169 |
164 168
|
raleqf |
⊢ ( ( 𝑛 (,) +∞ ) = ( 𝑁 (,) +∞ ) → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
| 170 |
163 169
|
syl |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ↔ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) ) |
| 171 |
170
|
rspcev |
⊢ ( ( 𝑁 ∈ ℕ ∧ ∀ 𝑟 ∈ ( 𝑁 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 172 |
61 162 171
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |
| 173 |
16 172
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℕ ∀ 𝑟 ∈ ( 𝑛 (,) +∞ ) ∀ 𝑖 ∈ 𝐴 𝜒 ) |