| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem32.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
fourierdlem32.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
fourierdlem32.altb |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
fourierdlem32.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 5 |
|
fourierdlem32.l |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 6 |
|
fourierdlem32.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 |
|
fourierdlem32.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 8 |
|
fourierdlem32.cltd |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 9 |
|
fourierdlem32.ss |
⊢ ( 𝜑 → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 10 |
|
fourierdlem32.y |
⊢ 𝑌 = if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) |
| 11 |
|
fourierdlem32.j |
⊢ 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑅 ∈ ( 𝐹 limℂ 𝐴 ) ) |
| 13 |
|
iftrue |
⊢ ( 𝐶 = 𝐴 → if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) = 𝑅 ) |
| 14 |
10 13
|
eqtr2id |
⊢ ( 𝐶 = 𝐴 → 𝑅 = 𝑌 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑅 = 𝑌 ) |
| 16 |
|
oveq2 |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) ) |
| 18 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 (,) 𝐷 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
| 22 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 24 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 25 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) |
| 26 |
6
|
leidd |
⊢ ( 𝜑 → 𝐶 ≤ 𝐶 ) |
| 27 |
7
|
rexrd |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
| 28 |
|
elico2 |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) ) |
| 29 |
6 27 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ↔ ( 𝐶 ∈ ℝ ∧ 𝐶 ≤ 𝐶 ∧ 𝐶 < 𝐷 ) ) ) |
| 30 |
6 26 8 29
|
mpbir3and |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ( 𝐶 [,) 𝐷 ) ) |
| 32 |
24
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 33 |
|
ovex |
⊢ ( 𝐴 [,) 𝐵 ) ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 [,) 𝐵 ) ∈ V ) |
| 35 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ Top ) |
| 36 |
32 34 35
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ∈ Top ) |
| 37 |
11 36
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐽 ∈ Top ) |
| 38 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → -∞ ∈ ℝ* ) |
| 40 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ∈ ℝ* ) |
| 41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) |
| 42 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐴 ∈ ℝ ) |
| 43 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐷 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
| 44 |
42 40 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
| 45 |
41 44
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) |
| 46 |
45
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ℝ ) |
| 47 |
46
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → -∞ < 𝑥 ) |
| 48 |
45
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 < 𝐷 ) |
| 49 |
39 40 46 47 48
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
| 50 |
45
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐴 ≤ 𝑥 ) |
| 51 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ∈ ℝ ) |
| 52 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐵 ∈ ℝ ) |
| 53 |
1 2 6 7 8 9
|
fourierdlem10 |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐶 ∧ 𝐷 ≤ 𝐵 ) ) |
| 54 |
53
|
simprd |
⊢ ( 𝜑 → 𝐷 ≤ 𝐵 ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐷 ≤ 𝐵 ) |
| 56 |
46 51 52 48 55
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 < 𝐵 ) |
| 57 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝐵 ∈ ℝ* ) |
| 59 |
|
elico2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 60 |
42 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 61 |
46 50 56 60
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 62 |
49 61
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) → 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 63 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
| 64 |
|
elioore |
⊢ ( 𝑥 ∈ ( -∞ (,) 𝐷 ) → 𝑥 ∈ ℝ ) |
| 65 |
63 64
|
syl |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
| 67 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ∈ ℝ ) |
| 70 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐵 ∈ ℝ* ) |
| 71 |
69 70 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 72 |
68 71
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 73 |
72
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐴 ≤ 𝑥 ) |
| 74 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( -∞ (,) 𝐷 ) ) |
| 75 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝐷 ∈ ℝ* ) |
| 76 |
|
elioo2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ* ) → ( 𝑥 ∈ ( -∞ (,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
| 77 |
38 75 76
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( -∞ (,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
| 78 |
74 77
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ -∞ < 𝑥 ∧ 𝑥 < 𝐷 ) ) |
| 79 |
78
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 < 𝐷 ) |
| 80 |
69 75 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐷 ) ) ) |
| 81 |
66 73 79 80
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ) |
| 82 |
62 81
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,) 𝐷 ) ↔ 𝑥 ∈ ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) ) |
| 83 |
82
|
eqrdv |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐷 ) = ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ) |
| 84 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
| 86 |
33
|
a1i |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ∈ V ) |
| 87 |
|
iooretop |
⊢ ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) |
| 88 |
87
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) ) |
| 89 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ∈ V ∧ ( -∞ (,) 𝐷 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 90 |
85 86 88 89
|
syl3anc |
⊢ ( 𝜑 → ( ( -∞ (,) 𝐷 ) ∩ ( 𝐴 [,) 𝐵 ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 91 |
83 90
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐴 [,) 𝐷 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 93 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 = 𝐴 ) |
| 94 |
93
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 [,) 𝐷 ) = ( 𝐴 [,) 𝐷 ) ) |
| 95 |
11
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 96 |
32
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 97 |
|
icossre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
| 98 |
1 57 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,) 𝐵 ) ⊆ ℝ ) |
| 99 |
|
reex |
⊢ ℝ ∈ V |
| 100 |
99
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 101 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 [,) 𝐵 ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 102 |
96 98 100 101
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 103 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 104 |
103
|
eqcomi |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) = ( topGen ‘ ran (,) ) |
| 105 |
104
|
oveq1i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) |
| 106 |
105
|
a1i |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( 𝐴 [,) 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 107 |
95 102 106
|
3eqtr2d |
⊢ ( 𝜑 → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐽 = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 109 |
92 94 108
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐶 [,) 𝐷 ) ∈ 𝐽 ) |
| 110 |
|
isopn3i |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐶 [,) 𝐷 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
| 111 |
37 109 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
| 112 |
31 111
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐶 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) |
| 113 |
|
id |
⊢ ( 𝐶 = 𝐴 → 𝐶 = 𝐴 ) |
| 114 |
113
|
eqcomd |
⊢ ( 𝐶 = 𝐴 → 𝐴 = 𝐶 ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐴 = 𝐶 ) |
| 116 |
|
uncom |
⊢ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) |
| 117 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 118 |
|
snunioo |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 119 |
117 57 3 118
|
syl3anc |
⊢ ( 𝜑 → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 120 |
116 119
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) = ( 𝐴 [,) 𝐵 ) ) |
| 122 |
121
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 [,) 𝐵 ) ) ) |
| 123 |
122 11
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) = 𝐽 ) |
| 124 |
123
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) = ( int ‘ 𝐽 ) ) |
| 125 |
|
uncom |
⊢ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( { 𝐴 } ∪ ( 𝐶 (,) 𝐷 ) ) |
| 126 |
|
sneq |
⊢ ( 𝐶 = 𝐴 → { 𝐶 } = { 𝐴 } ) |
| 127 |
126
|
eqcomd |
⊢ ( 𝐶 = 𝐴 → { 𝐴 } = { 𝐶 } ) |
| 128 |
127
|
uneq1d |
⊢ ( 𝐶 = 𝐴 → ( { 𝐴 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) ) |
| 129 |
125 128
|
eqtrid |
⊢ ( 𝐶 = 𝐴 → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) ) |
| 130 |
6
|
rexrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
| 131 |
|
snunioo |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐶 < 𝐷 ) → ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
| 132 |
130 27 8 131
|
syl3anc |
⊢ ( 𝜑 → ( { 𝐶 } ∪ ( 𝐶 (,) 𝐷 ) ) = ( 𝐶 [,) 𝐷 ) ) |
| 133 |
129 132
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) = ( 𝐶 [,) 𝐷 ) ) |
| 134 |
124 133
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) ) = ( ( int ‘ 𝐽 ) ‘ ( 𝐶 [,) 𝐷 ) ) ) |
| 135 |
112 115 134
|
3eltr4d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝐴 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 } ) ) ) ‘ ( ( 𝐶 (,) 𝐷 ) ∪ { 𝐴 } ) ) ) |
| 136 |
20 21 23 24 25 135
|
limcres |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐴 ) = ( 𝐹 limℂ 𝐴 ) ) |
| 137 |
17 136
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → ( 𝐹 limℂ 𝐴 ) = ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
| 138 |
12 15 137
|
3eltr3d |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐴 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
| 139 |
|
limcresi |
⊢ ( 𝐹 limℂ 𝐶 ) ⊆ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) |
| 140 |
|
iffalse |
⊢ ( ¬ 𝐶 = 𝐴 → if ( 𝐶 = 𝐴 , 𝑅 , ( 𝐹 ‘ 𝐶 ) ) = ( 𝐹 ‘ 𝐶 ) ) |
| 141 |
10 140
|
eqtrid |
⊢ ( ¬ 𝐶 = 𝐴 → 𝑌 = ( 𝐹 ‘ 𝐶 ) ) |
| 142 |
141
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 = ( 𝐹 ‘ 𝐶 ) ) |
| 143 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 144 |
143
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 145 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) |
| 146 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 147 |
146
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 148 |
32 147
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 149 |
148
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 150 |
24 145 149
|
cncfcn |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 151 |
22 144 150
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 152 |
4 151
|
eleqtrd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 153 |
24
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 154 |
|
resttopon |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 155 |
153 22 154
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) |
| 156 |
|
cncnp |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) ∈ ( TopOn ‘ ( 𝐴 (,) 𝐵 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 157 |
155 153 156
|
mp2an |
⊢ ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 158 |
152 157
|
sylib |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 159 |
158
|
simprd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 161 |
117
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 162 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 163 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ∈ ℝ ) |
| 164 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ∈ ℝ ) |
| 165 |
53
|
simpld |
⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) |
| 166 |
165
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ≤ 𝐶 ) |
| 167 |
113
|
eqcoms |
⊢ ( 𝐴 = 𝐶 → 𝐶 = 𝐴 ) |
| 168 |
167
|
necon3bi |
⊢ ( ¬ 𝐶 = 𝐴 → 𝐴 ≠ 𝐶 ) |
| 169 |
168
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 ≠ 𝐶 ) |
| 170 |
169
|
necomd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ≠ 𝐴 ) |
| 171 |
164 163 166 170
|
leneltd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐴 < 𝐶 ) |
| 172 |
6 7 2 8 54
|
ltletrd |
⊢ ( 𝜑 → 𝐶 < 𝐵 ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 < 𝐵 ) |
| 174 |
161 162 163 171 173
|
eliood |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 175 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
| 176 |
175
|
eleq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) ) |
| 177 |
176
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
| 178 |
160 174 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ) |
| 179 |
24 145
|
cnplimc |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ 𝐶 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) ) |
| 180 |
22 174 179
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 (,) 𝐵 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝐶 ) ↔ ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) ) |
| 181 |
178 180
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) ) |
| 182 |
181
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝐹 limℂ 𝐶 ) ) |
| 183 |
142 182
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 ∈ ( 𝐹 limℂ 𝐶 ) ) |
| 184 |
139 183
|
sselid |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 = 𝐴 ) → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |
| 185 |
138 184
|
pm2.61dan |
⊢ ( 𝜑 → 𝑌 ∈ ( ( 𝐹 ↾ ( 𝐶 (,) 𝐷 ) ) limℂ 𝐶 ) ) |