| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem32.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem32.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem32.altb |
|- ( ph -> A < B ) |
| 4 |
|
fourierdlem32.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 5 |
|
fourierdlem32.l |
|- ( ph -> R e. ( F limCC A ) ) |
| 6 |
|
fourierdlem32.c |
|- ( ph -> C e. RR ) |
| 7 |
|
fourierdlem32.d |
|- ( ph -> D e. RR ) |
| 8 |
|
fourierdlem32.cltd |
|- ( ph -> C < D ) |
| 9 |
|
fourierdlem32.ss |
|- ( ph -> ( C (,) D ) C_ ( A (,) B ) ) |
| 10 |
|
fourierdlem32.y |
|- Y = if ( C = A , R , ( F ` C ) ) |
| 11 |
|
fourierdlem32.j |
|- J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) |
| 12 |
5
|
adantr |
|- ( ( ph /\ C = A ) -> R e. ( F limCC A ) ) |
| 13 |
|
iftrue |
|- ( C = A -> if ( C = A , R , ( F ` C ) ) = R ) |
| 14 |
10 13
|
eqtr2id |
|- ( C = A -> R = Y ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ C = A ) -> R = Y ) |
| 16 |
|
oveq2 |
|- ( C = A -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) |
| 17 |
16
|
adantl |
|- ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) |
| 18 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
| 19 |
4 18
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ C = A ) -> F : ( A (,) B ) --> CC ) |
| 21 |
9
|
adantr |
|- ( ( ph /\ C = A ) -> ( C (,) D ) C_ ( A (,) B ) ) |
| 22 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
| 23 |
22
|
a1i |
|- ( ( ph /\ C = A ) -> ( A (,) B ) C_ CC ) |
| 24 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 25 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) |
| 26 |
6
|
leidd |
|- ( ph -> C <_ C ) |
| 27 |
7
|
rexrd |
|- ( ph -> D e. RR* ) |
| 28 |
|
elico2 |
|- ( ( C e. RR /\ D e. RR* ) -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) |
| 29 |
6 27 28
|
syl2anc |
|- ( ph -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) |
| 30 |
6 26 8 29
|
mpbir3and |
|- ( ph -> C e. ( C [,) D ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ C = A ) -> C e. ( C [,) D ) ) |
| 32 |
24
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 33 |
|
ovex |
|- ( A [,) B ) e. _V |
| 34 |
33
|
a1i |
|- ( ( ph /\ C = A ) -> ( A [,) B ) e. _V ) |
| 35 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) |
| 36 |
32 34 35
|
sylancr |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) |
| 37 |
11 36
|
eqeltrid |
|- ( ( ph /\ C = A ) -> J e. Top ) |
| 38 |
|
mnfxr |
|- -oo e. RR* |
| 39 |
38
|
a1i |
|- ( ( ph /\ x e. ( A [,) D ) ) -> -oo e. RR* ) |
| 40 |
27
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR* ) |
| 41 |
|
simpr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) D ) ) |
| 42 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> A e. RR ) |
| 43 |
|
elico2 |
|- ( ( A e. RR /\ D e. RR* ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
| 44 |
42 40 43
|
syl2anc |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
| 45 |
41 44
|
mpbid |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. RR /\ A <_ x /\ x < D ) ) |
| 46 |
45
|
simp1d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. RR ) |
| 47 |
46
|
mnfltd |
|- ( ( ph /\ x e. ( A [,) D ) ) -> -oo < x ) |
| 48 |
45
|
simp3d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x < D ) |
| 49 |
39 40 46 47 48
|
eliood |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( -oo (,) D ) ) |
| 50 |
45
|
simp2d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> A <_ x ) |
| 51 |
7
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR ) |
| 52 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR ) |
| 53 |
1 2 6 7 8 9
|
fourierdlem10 |
|- ( ph -> ( A <_ C /\ D <_ B ) ) |
| 54 |
53
|
simprd |
|- ( ph -> D <_ B ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D <_ B ) |
| 56 |
46 51 52 48 55
|
ltletrd |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x < B ) |
| 57 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR* ) |
| 59 |
|
elico2 |
|- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
| 60 |
42 58 59
|
syl2anc |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
| 61 |
46 50 56 60
|
mpbir3and |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) B ) ) |
| 62 |
49 61
|
elind |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) |
| 63 |
|
elinel1 |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( -oo (,) D ) ) |
| 64 |
|
elioore |
|- ( x e. ( -oo (,) D ) -> x e. RR ) |
| 65 |
63 64
|
syl |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. RR ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. RR ) |
| 67 |
|
elinel2 |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) |
| 68 |
67
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) |
| 69 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A e. RR ) |
| 70 |
57
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> B e. RR* ) |
| 71 |
69 70 59
|
syl2anc |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
| 72 |
68 71
|
mpbid |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ A <_ x /\ x < B ) ) |
| 73 |
72
|
simp2d |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A <_ x ) |
| 74 |
63
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) D ) ) |
| 75 |
27
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> D e. RR* ) |
| 76 |
|
elioo2 |
|- ( ( -oo e. RR* /\ D e. RR* ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) |
| 77 |
38 75 76
|
sylancr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) |
| 78 |
74 77
|
mpbid |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ -oo < x /\ x < D ) ) |
| 79 |
78
|
simp3d |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x < D ) |
| 80 |
69 75 43
|
syl2anc |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
| 81 |
66 73 79 80
|
mpbir3and |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) D ) ) |
| 82 |
62 81
|
impbida |
|- ( ph -> ( x e. ( A [,) D ) <-> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) ) |
| 83 |
82
|
eqrdv |
|- ( ph -> ( A [,) D ) = ( ( -oo (,) D ) i^i ( A [,) B ) ) ) |
| 84 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 85 |
84
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
| 86 |
33
|
a1i |
|- ( ph -> ( A [,) B ) e. _V ) |
| 87 |
|
iooretop |
|- ( -oo (,) D ) e. ( topGen ` ran (,) ) |
| 88 |
87
|
a1i |
|- ( ph -> ( -oo (,) D ) e. ( topGen ` ran (,) ) ) |
| 89 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) D ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 90 |
85 86 88 89
|
syl3anc |
|- ( ph -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 91 |
83 90
|
eqeltrd |
|- ( ph -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ C = A ) -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 93 |
|
simpr |
|- ( ( ph /\ C = A ) -> C = A ) |
| 94 |
93
|
oveq1d |
|- ( ( ph /\ C = A ) -> ( C [,) D ) = ( A [,) D ) ) |
| 95 |
11
|
a1i |
|- ( ph -> J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
| 96 |
32
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 97 |
|
icossre |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) |
| 98 |
1 57 97
|
syl2anc |
|- ( ph -> ( A [,) B ) C_ RR ) |
| 99 |
|
reex |
|- RR e. _V |
| 100 |
99
|
a1i |
|- ( ph -> RR e. _V ) |
| 101 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
| 102 |
96 98 100 101
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
| 103 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 104 |
103
|
eqcomi |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) |
| 105 |
104
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) |
| 106 |
105
|
a1i |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 107 |
95 102 106
|
3eqtr2d |
|- ( ph -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 108 |
107
|
adantr |
|- ( ( ph /\ C = A ) -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
| 109 |
92 94 108
|
3eltr4d |
|- ( ( ph /\ C = A ) -> ( C [,) D ) e. J ) |
| 110 |
|
isopn3i |
|- ( ( J e. Top /\ ( C [,) D ) e. J ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) |
| 111 |
37 109 110
|
syl2anc |
|- ( ( ph /\ C = A ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) |
| 112 |
31 111
|
eleqtrrd |
|- ( ( ph /\ C = A ) -> C e. ( ( int ` J ) ` ( C [,) D ) ) ) |
| 113 |
|
id |
|- ( C = A -> C = A ) |
| 114 |
113
|
eqcomd |
|- ( C = A -> A = C ) |
| 115 |
114
|
adantl |
|- ( ( ph /\ C = A ) -> A = C ) |
| 116 |
|
uncom |
|- ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) |
| 117 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
| 118 |
|
snunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 119 |
117 57 3 118
|
syl3anc |
|- ( ph -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
| 120 |
116 119
|
eqtrid |
|- ( ph -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ C = A ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
| 122 |
121
|
oveq2d |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
| 123 |
122 11
|
eqtr4di |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = J ) |
| 124 |
123
|
fveq2d |
|- ( ( ph /\ C = A ) -> ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) = ( int ` J ) ) |
| 125 |
|
uncom |
|- ( ( C (,) D ) u. { A } ) = ( { A } u. ( C (,) D ) ) |
| 126 |
|
sneq |
|- ( C = A -> { C } = { A } ) |
| 127 |
126
|
eqcomd |
|- ( C = A -> { A } = { C } ) |
| 128 |
127
|
uneq1d |
|- ( C = A -> ( { A } u. ( C (,) D ) ) = ( { C } u. ( C (,) D ) ) ) |
| 129 |
125 128
|
eqtrid |
|- ( C = A -> ( ( C (,) D ) u. { A } ) = ( { C } u. ( C (,) D ) ) ) |
| 130 |
6
|
rexrd |
|- ( ph -> C e. RR* ) |
| 131 |
|
snunioo |
|- ( ( C e. RR* /\ D e. RR* /\ C < D ) -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) |
| 132 |
130 27 8 131
|
syl3anc |
|- ( ph -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) |
| 133 |
129 132
|
sylan9eqr |
|- ( ( ph /\ C = A ) -> ( ( C (,) D ) u. { A } ) = ( C [,) D ) ) |
| 134 |
124 133
|
fveq12d |
|- ( ( ph /\ C = A ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) = ( ( int ` J ) ` ( C [,) D ) ) ) |
| 135 |
112 115 134
|
3eltr4d |
|- ( ( ph /\ C = A ) -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) ) |
| 136 |
20 21 23 24 25 135
|
limcres |
|- ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC A ) = ( F limCC A ) ) |
| 137 |
17 136
|
eqtr2d |
|- ( ( ph /\ C = A ) -> ( F limCC A ) = ( ( F |` ( C (,) D ) ) limCC C ) ) |
| 138 |
12 15 137
|
3eltr3d |
|- ( ( ph /\ C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |
| 139 |
|
limcresi |
|- ( F limCC C ) C_ ( ( F |` ( C (,) D ) ) limCC C ) |
| 140 |
|
iffalse |
|- ( -. C = A -> if ( C = A , R , ( F ` C ) ) = ( F ` C ) ) |
| 141 |
10 140
|
eqtrid |
|- ( -. C = A -> Y = ( F ` C ) ) |
| 142 |
141
|
adantl |
|- ( ( ph /\ -. C = A ) -> Y = ( F ` C ) ) |
| 143 |
|
ssid |
|- CC C_ CC |
| 144 |
143
|
a1i |
|- ( ph -> CC C_ CC ) |
| 145 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
| 146 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
| 147 |
146
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 148 |
32 147
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 149 |
148
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 150 |
24 145 149
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 151 |
22 144 150
|
sylancr |
|- ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 152 |
4 151
|
eleqtrd |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 153 |
24
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 154 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
| 155 |
153 22 154
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) |
| 156 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
| 157 |
155 153 156
|
mp2an |
|- ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 158 |
152 157
|
sylib |
|- ( ph -> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 159 |
158
|
simprd |
|- ( ph -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 160 |
159
|
adantr |
|- ( ( ph /\ -. C = A ) -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 161 |
117
|
adantr |
|- ( ( ph /\ -. C = A ) -> A e. RR* ) |
| 162 |
57
|
adantr |
|- ( ( ph /\ -. C = A ) -> B e. RR* ) |
| 163 |
6
|
adantr |
|- ( ( ph /\ -. C = A ) -> C e. RR ) |
| 164 |
1
|
adantr |
|- ( ( ph /\ -. C = A ) -> A e. RR ) |
| 165 |
53
|
simpld |
|- ( ph -> A <_ C ) |
| 166 |
165
|
adantr |
|- ( ( ph /\ -. C = A ) -> A <_ C ) |
| 167 |
113
|
eqcoms |
|- ( A = C -> C = A ) |
| 168 |
167
|
necon3bi |
|- ( -. C = A -> A =/= C ) |
| 169 |
168
|
adantl |
|- ( ( ph /\ -. C = A ) -> A =/= C ) |
| 170 |
169
|
necomd |
|- ( ( ph /\ -. C = A ) -> C =/= A ) |
| 171 |
164 163 166 170
|
leneltd |
|- ( ( ph /\ -. C = A ) -> A < C ) |
| 172 |
6 7 2 8 54
|
ltletrd |
|- ( ph -> C < B ) |
| 173 |
172
|
adantr |
|- ( ( ph /\ -. C = A ) -> C < B ) |
| 174 |
161 162 163 171 173
|
eliood |
|- ( ( ph /\ -. C = A ) -> C e. ( A (,) B ) ) |
| 175 |
|
fveq2 |
|- ( x = C -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
| 176 |
175
|
eleq2d |
|- ( x = C -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) ) |
| 177 |
176
|
rspccva |
|- ( ( A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ C e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
| 178 |
160 174 177
|
syl2anc |
|- ( ( ph /\ -. C = A ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
| 179 |
24 145
|
cnplimc |
|- ( ( ( A (,) B ) C_ CC /\ C e. ( A (,) B ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) |
| 180 |
22 174 179
|
sylancr |
|- ( ( ph /\ -. C = A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) |
| 181 |
178 180
|
mpbid |
|- ( ( ph /\ -. C = A ) -> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) |
| 182 |
181
|
simprd |
|- ( ( ph /\ -. C = A ) -> ( F ` C ) e. ( F limCC C ) ) |
| 183 |
142 182
|
eqeltrd |
|- ( ( ph /\ -. C = A ) -> Y e. ( F limCC C ) ) |
| 184 |
139 183
|
sselid |
|- ( ( ph /\ -. C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |
| 185 |
138 184
|
pm2.61dan |
|- ( ph -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |