| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frlmfzoccat.w |
|- W = ( K freeLMod ( 0 ..^ L ) ) |
| 2 |
|
frlmfzoccat.x |
|- X = ( K freeLMod ( 0 ..^ M ) ) |
| 3 |
|
frlmfzoccat.y |
|- Y = ( K freeLMod ( 0 ..^ N ) ) |
| 4 |
|
frlmfzoccat.b |
|- B = ( Base ` W ) |
| 5 |
|
frlmfzoccat.c |
|- C = ( Base ` X ) |
| 6 |
|
frlmfzoccat.d |
|- D = ( Base ` Y ) |
| 7 |
|
frlmfzoccat.k |
|- ( ph -> K e. Z ) |
| 8 |
|
frlmfzoccat.l |
|- ( ph -> ( M + N ) = L ) |
| 9 |
|
frlmfzoccat.m |
|- ( ph -> M e. NN0 ) |
| 10 |
|
frlmfzoccat.n |
|- ( ph -> N e. NN0 ) |
| 11 |
|
frlmfzoccat.u |
|- ( ph -> U e. C ) |
| 12 |
|
frlmfzoccat.v |
|- ( ph -> V e. D ) |
| 13 |
|
frlmvscadiccat.o |
|- O = ( .s ` W ) |
| 14 |
|
frlmvscadiccat.p |
|- .xb = ( .s ` X ) |
| 15 |
|
frlmvscadiccat.q |
|- .x. = ( .s ` Y ) |
| 16 |
|
frlmvscadiccat.s |
|- S = ( Base ` K ) |
| 17 |
|
frlmvscadiccat.a |
|- ( ph -> A e. S ) |
| 18 |
|
fconstg |
|- ( A e. S -> ( ( 0 ..^ L ) X. { A } ) : ( 0 ..^ L ) --> { A } ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( ( 0 ..^ L ) X. { A } ) : ( 0 ..^ L ) --> { A } ) |
| 20 |
19
|
ffnd |
|- ( ph -> ( ( 0 ..^ L ) X. { A } ) Fn ( 0 ..^ L ) ) |
| 21 |
|
fconstg |
|- ( A e. S -> ( ( 0 ..^ M ) X. { A } ) : ( 0 ..^ M ) --> { A } ) |
| 22 |
|
iswrdi |
|- ( ( ( 0 ..^ M ) X. { A } ) : ( 0 ..^ M ) --> { A } -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) |
| 23 |
17 21 22
|
3syl |
|- ( ph -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) |
| 24 |
|
fconstg |
|- ( A e. S -> ( ( 0 ..^ N ) X. { A } ) : ( 0 ..^ N ) --> { A } ) |
| 25 |
|
iswrdi |
|- ( ( ( 0 ..^ N ) X. { A } ) : ( 0 ..^ N ) --> { A } -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) |
| 26 |
17 24 25
|
3syl |
|- ( ph -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) |
| 27 |
|
ccatvalfn |
|- ( ( ( ( 0 ..^ M ) X. { A } ) e. Word { A } /\ ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) ) |
| 28 |
23 26 27
|
syl2anc |
|- ( ph -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) ) |
| 29 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
| 30 |
|
snfi |
|- { A } e. Fin |
| 31 |
|
hashxp |
|- ( ( ( 0 ..^ M ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) ) |
| 32 |
29 30 31
|
mp2an |
|- ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) |
| 33 |
|
hashsng |
|- ( A e. S -> ( # ` { A } ) = 1 ) |
| 34 |
17 33
|
syl |
|- ( ph -> ( # ` { A } ) = 1 ) |
| 35 |
34
|
oveq2d |
|- ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. 1 ) ) |
| 36 |
|
hashcl |
|- ( ( 0 ..^ M ) e. Fin -> ( # ` ( 0 ..^ M ) ) e. NN0 ) |
| 37 |
29 36
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ M ) ) e. NN0 ) |
| 38 |
37
|
nn0cnd |
|- ( ph -> ( # ` ( 0 ..^ M ) ) e. CC ) |
| 39 |
38
|
mulridd |
|- ( ph -> ( ( # ` ( 0 ..^ M ) ) x. 1 ) = ( # ` ( 0 ..^ M ) ) ) |
| 40 |
|
hashfzo0 |
|- ( M e. NN0 -> ( # ` ( 0 ..^ M ) ) = M ) |
| 41 |
9 40
|
syl |
|- ( ph -> ( # ` ( 0 ..^ M ) ) = M ) |
| 42 |
35 39 41
|
3eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) = M ) |
| 43 |
32 42
|
eqtrid |
|- ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) |
| 44 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 45 |
|
hashxp |
|- ( ( ( 0 ..^ N ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) ) |
| 46 |
44 30 45
|
mp2an |
|- ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) |
| 47 |
34
|
oveq2d |
|- ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. 1 ) ) |
| 48 |
|
hashcl |
|- ( ( 0 ..^ N ) e. Fin -> ( # ` ( 0 ..^ N ) ) e. NN0 ) |
| 49 |
44 48
|
mp1i |
|- ( ph -> ( # ` ( 0 ..^ N ) ) e. NN0 ) |
| 50 |
49
|
nn0cnd |
|- ( ph -> ( # ` ( 0 ..^ N ) ) e. CC ) |
| 51 |
50
|
mulridd |
|- ( ph -> ( ( # ` ( 0 ..^ N ) ) x. 1 ) = ( # ` ( 0 ..^ N ) ) ) |
| 52 |
|
hashfzo0 |
|- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
| 53 |
10 52
|
syl |
|- ( ph -> ( # ` ( 0 ..^ N ) ) = N ) |
| 54 |
47 51 53
|
3eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = N ) |
| 55 |
46 54
|
eqtrid |
|- ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = N ) |
| 56 |
43 55
|
oveq12d |
|- ( ph -> ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) = ( M + N ) ) |
| 57 |
56 8
|
eqtrd |
|- ( ph -> ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) = L ) |
| 58 |
57
|
oveq2d |
|- ( ph -> ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) = ( 0 ..^ L ) ) |
| 59 |
58
|
fneq2d |
|- ( ph -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) <-> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ L ) ) ) |
| 60 |
28 59
|
mpbid |
|- ( ph -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ L ) ) |
| 61 |
43
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) |
| 62 |
61
|
breq2d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) <-> x < M ) ) |
| 63 |
62
|
ifbid |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) = if ( x < M , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) |
| 64 |
17
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> A e. S ) |
| 65 |
|
elfzouz |
|- ( x e. ( 0 ..^ L ) -> x e. ( ZZ>= ` 0 ) ) |
| 66 |
65
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x e. ( ZZ>= ` 0 ) ) |
| 67 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> M e. NN0 ) |
| 68 |
67
|
nn0zd |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> M e. ZZ ) |
| 69 |
|
simpr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x < M ) |
| 70 |
|
elfzo2 |
|- ( x e. ( 0 ..^ M ) <-> ( x e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ x < M ) ) |
| 71 |
66 68 69 70
|
syl3anbrc |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x e. ( 0 ..^ M ) ) |
| 72 |
|
fvconst2g |
|- ( ( A e. S /\ x e. ( 0 ..^ M ) ) -> ( ( ( 0 ..^ M ) X. { A } ) ` x ) = A ) |
| 73 |
64 71 72
|
syl2an2r |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> ( ( ( 0 ..^ M ) X. { A } ) ` x ) = A ) |
| 74 |
43
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) |
| 75 |
74
|
oveq2d |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) = ( x - M ) ) |
| 76 |
9
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> M e. NN0 ) |
| 77 |
|
elfzonn0 |
|- ( x e. ( 0 ..^ L ) -> x e. NN0 ) |
| 78 |
77
|
ad2antlr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> x e. NN0 ) |
| 79 |
9
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. NN0 ) |
| 80 |
79
|
nn0red |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. RR ) |
| 81 |
|
elfzoelz |
|- ( x e. ( 0 ..^ L ) -> x e. ZZ ) |
| 82 |
81
|
adantl |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. ZZ ) |
| 83 |
82
|
zred |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. RR ) |
| 84 |
80 83
|
lenltd |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M <_ x <-> -. x < M ) ) |
| 85 |
84
|
biimpar |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> M <_ x ) |
| 86 |
|
nn0sub2 |
|- ( ( M e. NN0 /\ x e. NN0 /\ M <_ x ) -> ( x - M ) e. NN0 ) |
| 87 |
76 78 85 86
|
syl3anc |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. NN0 ) |
| 88 |
|
elnn0uz |
|- ( ( x - M ) e. NN0 <-> ( x - M ) e. ( ZZ>= ` 0 ) ) |
| 89 |
87 88
|
sylib |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. ( ZZ>= ` 0 ) ) |
| 90 |
10
|
ad2antrr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> N e. NN0 ) |
| 91 |
90
|
nn0zd |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> N e. ZZ ) |
| 92 |
|
elfzolt2 |
|- ( x e. ( 0 ..^ L ) -> x < L ) |
| 93 |
92
|
adantl |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> x < L ) |
| 94 |
80
|
recnd |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. CC ) |
| 95 |
83
|
recnd |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. CC ) |
| 96 |
94 95
|
pncan3d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + ( x - M ) ) = x ) |
| 97 |
8
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + N ) = L ) |
| 98 |
93 96 97
|
3brtr4d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + ( x - M ) ) < ( M + N ) ) |
| 99 |
83 80
|
resubcld |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x - M ) e. RR ) |
| 100 |
10
|
adantr |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> N e. NN0 ) |
| 101 |
100
|
nn0red |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> N e. RR ) |
| 102 |
99 101 80
|
ltadd2d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( x - M ) < N <-> ( M + ( x - M ) ) < ( M + N ) ) ) |
| 103 |
98 102
|
mpbird |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x - M ) < N ) |
| 104 |
103
|
adantr |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) < N ) |
| 105 |
|
elfzo2 |
|- ( ( x - M ) e. ( 0 ..^ N ) <-> ( ( x - M ) e. ( ZZ>= ` 0 ) /\ N e. ZZ /\ ( x - M ) < N ) ) |
| 106 |
89 91 104 105
|
syl3anbrc |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. ( 0 ..^ N ) ) |
| 107 |
75 106
|
eqeltrd |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) e. ( 0 ..^ N ) ) |
| 108 |
|
fvconst2g |
|- ( ( A e. S /\ ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) e. ( 0 ..^ N ) ) -> ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) = A ) |
| 109 |
64 107 108
|
syl2an2r |
|- ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) = A ) |
| 110 |
73 109
|
ifeqda |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> if ( x < M , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) = A ) |
| 111 |
63 110
|
eqtr2d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> A = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) |
| 112 |
|
fvconst2g |
|- ( ( A e. S /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = A ) |
| 113 |
17 112
|
sylan |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = A ) |
| 114 |
64 21 22
|
3syl |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) |
| 115 |
64 24 25
|
3syl |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) |
| 116 |
|
ccatsymb |
|- ( ( ( ( 0 ..^ M ) X. { A } ) e. Word { A } /\ ( ( 0 ..^ N ) X. { A } ) e. Word { A } /\ x e. ZZ ) -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) |
| 117 |
114 115 82 116
|
syl3anc |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) |
| 118 |
111 113 117
|
3eqtr4d |
|- ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) ) |
| 119 |
20 60 118
|
eqfnfvd |
|- ( ph -> ( ( 0 ..^ L ) X. { A } ) = ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ) |
| 120 |
119
|
oveq1d |
|- ( ph -> ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) oF ( .r ` K ) ( U ++ V ) ) ) |
| 121 |
2 5 16
|
frlmfzowrd |
|- ( U e. C -> U e. Word S ) |
| 122 |
11 121
|
syl |
|- ( ph -> U e. Word S ) |
| 123 |
3 6 16
|
frlmfzowrd |
|- ( V e. D -> V e. Word S ) |
| 124 |
12 123
|
syl |
|- ( ph -> V e. Word S ) |
| 125 |
32 35
|
eqtrid |
|- ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. 1 ) ) |
| 126 |
|
ovexd |
|- ( ph -> ( 0 ..^ M ) e. _V ) |
| 127 |
2 16 5
|
frlmbasf |
|- ( ( ( 0 ..^ M ) e. _V /\ U e. C ) -> U : ( 0 ..^ M ) --> S ) |
| 128 |
126 11 127
|
syl2anc |
|- ( ph -> U : ( 0 ..^ M ) --> S ) |
| 129 |
128
|
ffnd |
|- ( ph -> U Fn ( 0 ..^ M ) ) |
| 130 |
|
hashfn |
|- ( U Fn ( 0 ..^ M ) -> ( # ` U ) = ( # ` ( 0 ..^ M ) ) ) |
| 131 |
129 130
|
syl |
|- ( ph -> ( # ` U ) = ( # ` ( 0 ..^ M ) ) ) |
| 132 |
39 125 131
|
3eqtr4d |
|- ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( # ` U ) ) |
| 133 |
47 51
|
eqtrd |
|- ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 134 |
46 133
|
eqtrid |
|- ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( # ` ( 0 ..^ N ) ) ) |
| 135 |
|
ovexd |
|- ( ph -> ( 0 ..^ N ) e. _V ) |
| 136 |
3 16 6
|
frlmbasf |
|- ( ( ( 0 ..^ N ) e. _V /\ V e. D ) -> V : ( 0 ..^ N ) --> S ) |
| 137 |
135 12 136
|
syl2anc |
|- ( ph -> V : ( 0 ..^ N ) --> S ) |
| 138 |
137
|
ffnd |
|- ( ph -> V Fn ( 0 ..^ N ) ) |
| 139 |
|
hashfn |
|- ( V Fn ( 0 ..^ N ) -> ( # ` V ) = ( # ` ( 0 ..^ N ) ) ) |
| 140 |
138 139
|
syl |
|- ( ph -> ( # ` V ) = ( # ` ( 0 ..^ N ) ) ) |
| 141 |
134 140
|
eqtr4d |
|- ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( # ` V ) ) |
| 142 |
23 26 122 124 132 141
|
ofccat |
|- ( ph -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) |
| 143 |
120 142
|
eqtrd |
|- ( ph -> ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) |
| 144 |
|
ovexd |
|- ( ph -> ( 0 ..^ L ) e. _V ) |
| 145 |
1 2 3 4 5 6 7 8 9 10 11 12
|
frlmfzoccat |
|- ( ph -> ( U ++ V ) e. B ) |
| 146 |
|
eqid |
|- ( .r ` K ) = ( .r ` K ) |
| 147 |
1 4 16 144 17 145 13 146
|
frlmvscafval |
|- ( ph -> ( A O ( U ++ V ) ) = ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) ) |
| 148 |
2 5 16 126 17 11 14 146
|
frlmvscafval |
|- ( ph -> ( A .xb U ) = ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ) |
| 149 |
3 6 16 135 17 12 15 146
|
frlmvscafval |
|- ( ph -> ( A .x. V ) = ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) |
| 150 |
148 149
|
oveq12d |
|- ( ph -> ( ( A .xb U ) ++ ( A .x. V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) |
| 151 |
143 147 150
|
3eqtr4d |
|- ( ph -> ( A O ( U ++ V ) ) = ( ( A .xb U ) ++ ( A .x. V ) ) ) |