| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frlmfzoccat.w |  |-  W = ( K freeLMod ( 0 ..^ L ) ) | 
						
							| 2 |  | frlmfzoccat.x |  |-  X = ( K freeLMod ( 0 ..^ M ) ) | 
						
							| 3 |  | frlmfzoccat.y |  |-  Y = ( K freeLMod ( 0 ..^ N ) ) | 
						
							| 4 |  | frlmfzoccat.b |  |-  B = ( Base ` W ) | 
						
							| 5 |  | frlmfzoccat.c |  |-  C = ( Base ` X ) | 
						
							| 6 |  | frlmfzoccat.d |  |-  D = ( Base ` Y ) | 
						
							| 7 |  | frlmfzoccat.k |  |-  ( ph -> K e. Z ) | 
						
							| 8 |  | frlmfzoccat.l |  |-  ( ph -> ( M + N ) = L ) | 
						
							| 9 |  | frlmfzoccat.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 10 |  | frlmfzoccat.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 11 |  | frlmfzoccat.u |  |-  ( ph -> U e. C ) | 
						
							| 12 |  | frlmfzoccat.v |  |-  ( ph -> V e. D ) | 
						
							| 13 |  | frlmvscadiccat.o |  |-  O = ( .s ` W ) | 
						
							| 14 |  | frlmvscadiccat.p |  |-  .xb = ( .s ` X ) | 
						
							| 15 |  | frlmvscadiccat.q |  |-  .x. = ( .s ` Y ) | 
						
							| 16 |  | frlmvscadiccat.s |  |-  S = ( Base ` K ) | 
						
							| 17 |  | frlmvscadiccat.a |  |-  ( ph -> A e. S ) | 
						
							| 18 |  | fconstg |  |-  ( A e. S -> ( ( 0 ..^ L ) X. { A } ) : ( 0 ..^ L ) --> { A } ) | 
						
							| 19 | 17 18 | syl |  |-  ( ph -> ( ( 0 ..^ L ) X. { A } ) : ( 0 ..^ L ) --> { A } ) | 
						
							| 20 | 19 | ffnd |  |-  ( ph -> ( ( 0 ..^ L ) X. { A } ) Fn ( 0 ..^ L ) ) | 
						
							| 21 |  | fconstg |  |-  ( A e. S -> ( ( 0 ..^ M ) X. { A } ) : ( 0 ..^ M ) --> { A } ) | 
						
							| 22 |  | iswrdi |  |-  ( ( ( 0 ..^ M ) X. { A } ) : ( 0 ..^ M ) --> { A } -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) | 
						
							| 23 | 17 21 22 | 3syl |  |-  ( ph -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) | 
						
							| 24 |  | fconstg |  |-  ( A e. S -> ( ( 0 ..^ N ) X. { A } ) : ( 0 ..^ N ) --> { A } ) | 
						
							| 25 |  | iswrdi |  |-  ( ( ( 0 ..^ N ) X. { A } ) : ( 0 ..^ N ) --> { A } -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) | 
						
							| 26 | 17 24 25 | 3syl |  |-  ( ph -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) | 
						
							| 27 |  | ccatvalfn |  |-  ( ( ( ( 0 ..^ M ) X. { A } ) e. Word { A } /\ ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) ) | 
						
							| 28 | 23 26 27 | syl2anc |  |-  ( ph -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) ) | 
						
							| 29 |  | fzofi |  |-  ( 0 ..^ M ) e. Fin | 
						
							| 30 |  | snfi |  |-  { A } e. Fin | 
						
							| 31 |  | hashxp |  |-  ( ( ( 0 ..^ M ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) ) | 
						
							| 32 | 29 30 31 | mp2an |  |-  ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) | 
						
							| 33 |  | hashsng |  |-  ( A e. S -> ( # ` { A } ) = 1 ) | 
						
							| 34 | 17 33 | syl |  |-  ( ph -> ( # ` { A } ) = 1 ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. 1 ) ) | 
						
							| 36 |  | hashcl |  |-  ( ( 0 ..^ M ) e. Fin -> ( # ` ( 0 ..^ M ) ) e. NN0 ) | 
						
							| 37 | 29 36 | mp1i |  |-  ( ph -> ( # ` ( 0 ..^ M ) ) e. NN0 ) | 
						
							| 38 | 37 | nn0cnd |  |-  ( ph -> ( # ` ( 0 ..^ M ) ) e. CC ) | 
						
							| 39 | 38 | mulridd |  |-  ( ph -> ( ( # ` ( 0 ..^ M ) ) x. 1 ) = ( # ` ( 0 ..^ M ) ) ) | 
						
							| 40 |  | hashfzo0 |  |-  ( M e. NN0 -> ( # ` ( 0 ..^ M ) ) = M ) | 
						
							| 41 | 9 40 | syl |  |-  ( ph -> ( # ` ( 0 ..^ M ) ) = M ) | 
						
							| 42 | 35 39 41 | 3eqtrd |  |-  ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( # ` { A } ) ) = M ) | 
						
							| 43 | 32 42 | eqtrid |  |-  ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) | 
						
							| 44 |  | fzofi |  |-  ( 0 ..^ N ) e. Fin | 
						
							| 45 |  | hashxp |  |-  ( ( ( 0 ..^ N ) e. Fin /\ { A } e. Fin ) -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) ) | 
						
							| 46 | 44 30 45 | mp2an |  |-  ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) | 
						
							| 47 | 34 | oveq2d |  |-  ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = ( ( # ` ( 0 ..^ N ) ) x. 1 ) ) | 
						
							| 48 |  | hashcl |  |-  ( ( 0 ..^ N ) e. Fin -> ( # ` ( 0 ..^ N ) ) e. NN0 ) | 
						
							| 49 | 44 48 | mp1i |  |-  ( ph -> ( # ` ( 0 ..^ N ) ) e. NN0 ) | 
						
							| 50 | 49 | nn0cnd |  |-  ( ph -> ( # ` ( 0 ..^ N ) ) e. CC ) | 
						
							| 51 | 50 | mulridd |  |-  ( ph -> ( ( # ` ( 0 ..^ N ) ) x. 1 ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 52 |  | hashfzo0 |  |-  ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 53 | 10 52 | syl |  |-  ( ph -> ( # ` ( 0 ..^ N ) ) = N ) | 
						
							| 54 | 47 51 53 | 3eqtrd |  |-  ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = N ) | 
						
							| 55 | 46 54 | eqtrid |  |-  ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = N ) | 
						
							| 56 | 43 55 | oveq12d |  |-  ( ph -> ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) = ( M + N ) ) | 
						
							| 57 | 56 8 | eqtrd |  |-  ( ph -> ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) = L ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ph -> ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) = ( 0 ..^ L ) ) | 
						
							| 59 | 58 | fneq2d |  |-  ( ph -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ ( ( # ` ( ( 0 ..^ M ) X. { A } ) ) + ( # ` ( ( 0 ..^ N ) X. { A } ) ) ) ) <-> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ L ) ) ) | 
						
							| 60 | 28 59 | mpbid |  |-  ( ph -> ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) Fn ( 0 ..^ L ) ) | 
						
							| 61 | 43 | adantr |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) | 
						
							| 62 | 61 | breq2d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) <-> x < M ) ) | 
						
							| 63 | 62 | ifbid |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) = if ( x < M , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) | 
						
							| 64 | 17 | adantr |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> A e. S ) | 
						
							| 65 |  | elfzouz |  |-  ( x e. ( 0 ..^ L ) -> x e. ( ZZ>= ` 0 ) ) | 
						
							| 66 | 65 | ad2antlr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x e. ( ZZ>= ` 0 ) ) | 
						
							| 67 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> M e. NN0 ) | 
						
							| 68 | 67 | nn0zd |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> M e. ZZ ) | 
						
							| 69 |  | simpr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x < M ) | 
						
							| 70 |  | elfzo2 |  |-  ( x e. ( 0 ..^ M ) <-> ( x e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ x < M ) ) | 
						
							| 71 | 66 68 69 70 | syl3anbrc |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> x e. ( 0 ..^ M ) ) | 
						
							| 72 |  | fvconst2g |  |-  ( ( A e. S /\ x e. ( 0 ..^ M ) ) -> ( ( ( 0 ..^ M ) X. { A } ) ` x ) = A ) | 
						
							| 73 | 64 71 72 | syl2an2r |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ x < M ) -> ( ( ( 0 ..^ M ) X. { A } ) ` x ) = A ) | 
						
							| 74 | 43 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = M ) | 
						
							| 75 | 74 | oveq2d |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) = ( x - M ) ) | 
						
							| 76 | 9 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> M e. NN0 ) | 
						
							| 77 |  | elfzonn0 |  |-  ( x e. ( 0 ..^ L ) -> x e. NN0 ) | 
						
							| 78 | 77 | ad2antlr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> x e. NN0 ) | 
						
							| 79 | 9 | adantr |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. NN0 ) | 
						
							| 80 | 79 | nn0red |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. RR ) | 
						
							| 81 |  | elfzoelz |  |-  ( x e. ( 0 ..^ L ) -> x e. ZZ ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. ZZ ) | 
						
							| 83 | 82 | zred |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. RR ) | 
						
							| 84 | 80 83 | lenltd |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M <_ x <-> -. x < M ) ) | 
						
							| 85 | 84 | biimpar |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> M <_ x ) | 
						
							| 86 |  | nn0sub2 |  |-  ( ( M e. NN0 /\ x e. NN0 /\ M <_ x ) -> ( x - M ) e. NN0 ) | 
						
							| 87 | 76 78 85 86 | syl3anc |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. NN0 ) | 
						
							| 88 |  | elnn0uz |  |-  ( ( x - M ) e. NN0 <-> ( x - M ) e. ( ZZ>= ` 0 ) ) | 
						
							| 89 | 87 88 | sylib |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. ( ZZ>= ` 0 ) ) | 
						
							| 90 | 10 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> N e. NN0 ) | 
						
							| 91 | 90 | nn0zd |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> N e. ZZ ) | 
						
							| 92 |  | elfzolt2 |  |-  ( x e. ( 0 ..^ L ) -> x < L ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> x < L ) | 
						
							| 94 | 80 | recnd |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> M e. CC ) | 
						
							| 95 | 83 | recnd |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> x e. CC ) | 
						
							| 96 | 94 95 | pncan3d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + ( x - M ) ) = x ) | 
						
							| 97 | 8 | adantr |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + N ) = L ) | 
						
							| 98 | 93 96 97 | 3brtr4d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( M + ( x - M ) ) < ( M + N ) ) | 
						
							| 99 | 83 80 | resubcld |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x - M ) e. RR ) | 
						
							| 100 | 10 | adantr |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> N e. NN0 ) | 
						
							| 101 | 100 | nn0red |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> N e. RR ) | 
						
							| 102 | 99 101 80 | ltadd2d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( x - M ) < N <-> ( M + ( x - M ) ) < ( M + N ) ) ) | 
						
							| 103 | 98 102 | mpbird |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( x - M ) < N ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) < N ) | 
						
							| 105 |  | elfzo2 |  |-  ( ( x - M ) e. ( 0 ..^ N ) <-> ( ( x - M ) e. ( ZZ>= ` 0 ) /\ N e. ZZ /\ ( x - M ) < N ) ) | 
						
							| 106 | 89 91 104 105 | syl3anbrc |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - M ) e. ( 0 ..^ N ) ) | 
						
							| 107 | 75 106 | eqeltrd |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) e. ( 0 ..^ N ) ) | 
						
							| 108 |  | fvconst2g |  |-  ( ( A e. S /\ ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) e. ( 0 ..^ N ) ) -> ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) = A ) | 
						
							| 109 | 64 107 108 | syl2an2r |  |-  ( ( ( ph /\ x e. ( 0 ..^ L ) ) /\ -. x < M ) -> ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) = A ) | 
						
							| 110 | 73 109 | ifeqda |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> if ( x < M , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) = A ) | 
						
							| 111 | 63 110 | eqtr2d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> A = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) | 
						
							| 112 |  | fvconst2g |  |-  ( ( A e. S /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = A ) | 
						
							| 113 | 17 112 | sylan |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = A ) | 
						
							| 114 | 64 21 22 | 3syl |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( 0 ..^ M ) X. { A } ) e. Word { A } ) | 
						
							| 115 | 64 24 25 | 3syl |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( 0 ..^ N ) X. { A } ) e. Word { A } ) | 
						
							| 116 |  | ccatsymb |  |-  ( ( ( ( 0 ..^ M ) X. { A } ) e. Word { A } /\ ( ( 0 ..^ N ) X. { A } ) e. Word { A } /\ x e. ZZ ) -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) | 
						
							| 117 | 114 115 82 116 | syl3anc |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) = if ( x < ( # ` ( ( 0 ..^ M ) X. { A } ) ) , ( ( ( 0 ..^ M ) X. { A } ) ` x ) , ( ( ( 0 ..^ N ) X. { A } ) ` ( x - ( # ` ( ( 0 ..^ M ) X. { A } ) ) ) ) ) ) | 
						
							| 118 | 111 113 117 | 3eqtr4d |  |-  ( ( ph /\ x e. ( 0 ..^ L ) ) -> ( ( ( 0 ..^ L ) X. { A } ) ` x ) = ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ` x ) ) | 
						
							| 119 | 20 60 118 | eqfnfvd |  |-  ( ph -> ( ( 0 ..^ L ) X. { A } ) = ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ph -> ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) oF ( .r ` K ) ( U ++ V ) ) ) | 
						
							| 121 | 2 5 16 | frlmfzowrd |  |-  ( U e. C -> U e. Word S ) | 
						
							| 122 | 11 121 | syl |  |-  ( ph -> U e. Word S ) | 
						
							| 123 | 3 6 16 | frlmfzowrd |  |-  ( V e. D -> V e. Word S ) | 
						
							| 124 | 12 123 | syl |  |-  ( ph -> V e. Word S ) | 
						
							| 125 | 32 35 | eqtrid |  |-  ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( ( # ` ( 0 ..^ M ) ) x. 1 ) ) | 
						
							| 126 |  | ovexd |  |-  ( ph -> ( 0 ..^ M ) e. _V ) | 
						
							| 127 | 2 16 5 | frlmbasf |  |-  ( ( ( 0 ..^ M ) e. _V /\ U e. C ) -> U : ( 0 ..^ M ) --> S ) | 
						
							| 128 | 126 11 127 | syl2anc |  |-  ( ph -> U : ( 0 ..^ M ) --> S ) | 
						
							| 129 | 128 | ffnd |  |-  ( ph -> U Fn ( 0 ..^ M ) ) | 
						
							| 130 |  | hashfn |  |-  ( U Fn ( 0 ..^ M ) -> ( # ` U ) = ( # ` ( 0 ..^ M ) ) ) | 
						
							| 131 | 129 130 | syl |  |-  ( ph -> ( # ` U ) = ( # ` ( 0 ..^ M ) ) ) | 
						
							| 132 | 39 125 131 | 3eqtr4d |  |-  ( ph -> ( # ` ( ( 0 ..^ M ) X. { A } ) ) = ( # ` U ) ) | 
						
							| 133 | 47 51 | eqtrd |  |-  ( ph -> ( ( # ` ( 0 ..^ N ) ) x. ( # ` { A } ) ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 134 | 46 133 | eqtrid |  |-  ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 135 |  | ovexd |  |-  ( ph -> ( 0 ..^ N ) e. _V ) | 
						
							| 136 | 3 16 6 | frlmbasf |  |-  ( ( ( 0 ..^ N ) e. _V /\ V e. D ) -> V : ( 0 ..^ N ) --> S ) | 
						
							| 137 | 135 12 136 | syl2anc |  |-  ( ph -> V : ( 0 ..^ N ) --> S ) | 
						
							| 138 | 137 | ffnd |  |-  ( ph -> V Fn ( 0 ..^ N ) ) | 
						
							| 139 |  | hashfn |  |-  ( V Fn ( 0 ..^ N ) -> ( # ` V ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 140 | 138 139 | syl |  |-  ( ph -> ( # ` V ) = ( # ` ( 0 ..^ N ) ) ) | 
						
							| 141 | 134 140 | eqtr4d |  |-  ( ph -> ( # ` ( ( 0 ..^ N ) X. { A } ) ) = ( # ` V ) ) | 
						
							| 142 | 23 26 122 124 132 141 | ofccat |  |-  ( ph -> ( ( ( ( 0 ..^ M ) X. { A } ) ++ ( ( 0 ..^ N ) X. { A } ) ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) | 
						
							| 143 | 120 142 | eqtrd |  |-  ( ph -> ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) | 
						
							| 144 |  | ovexd |  |-  ( ph -> ( 0 ..^ L ) e. _V ) | 
						
							| 145 | 1 2 3 4 5 6 7 8 9 10 11 12 | frlmfzoccat |  |-  ( ph -> ( U ++ V ) e. B ) | 
						
							| 146 |  | eqid |  |-  ( .r ` K ) = ( .r ` K ) | 
						
							| 147 | 1 4 16 144 17 145 13 146 | frlmvscafval |  |-  ( ph -> ( A O ( U ++ V ) ) = ( ( ( 0 ..^ L ) X. { A } ) oF ( .r ` K ) ( U ++ V ) ) ) | 
						
							| 148 | 2 5 16 126 17 11 14 146 | frlmvscafval |  |-  ( ph -> ( A .xb U ) = ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ) | 
						
							| 149 | 3 6 16 135 17 12 15 146 | frlmvscafval |  |-  ( ph -> ( A .x. V ) = ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) | 
						
							| 150 | 148 149 | oveq12d |  |-  ( ph -> ( ( A .xb U ) ++ ( A .x. V ) ) = ( ( ( ( 0 ..^ M ) X. { A } ) oF ( .r ` K ) U ) ++ ( ( ( 0 ..^ N ) X. { A } ) oF ( .r ` K ) V ) ) ) | 
						
							| 151 | 143 147 150 | 3eqtr4d |  |-  ( ph -> ( A O ( U ++ V ) ) = ( ( A .xb U ) ++ ( A .x. V ) ) ) |