Step |
Hyp |
Ref |
Expression |
1 |
|
frlmfzoccat.w |
⊢ 𝑊 = ( 𝐾 freeLMod ( 0 ..^ 𝐿 ) ) |
2 |
|
frlmfzoccat.x |
⊢ 𝑋 = ( 𝐾 freeLMod ( 0 ..^ 𝑀 ) ) |
3 |
|
frlmfzoccat.y |
⊢ 𝑌 = ( 𝐾 freeLMod ( 0 ..^ 𝑁 ) ) |
4 |
|
frlmfzoccat.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
5 |
|
frlmfzoccat.c |
⊢ 𝐶 = ( Base ‘ 𝑋 ) |
6 |
|
frlmfzoccat.d |
⊢ 𝐷 = ( Base ‘ 𝑌 ) |
7 |
|
frlmfzoccat.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑍 ) |
8 |
|
frlmfzoccat.l |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) = 𝐿 ) |
9 |
|
frlmfzoccat.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
10 |
|
frlmfzoccat.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
11 |
|
frlmfzoccat.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐶 ) |
12 |
|
frlmfzoccat.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐷 ) |
13 |
|
frlmvscadiccat.o |
⊢ 𝑂 = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
frlmvscadiccat.p |
⊢ ∙ = ( ·𝑠 ‘ 𝑋 ) |
15 |
|
frlmvscadiccat.q |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
16 |
|
frlmvscadiccat.s |
⊢ 𝑆 = ( Base ‘ 𝐾 ) |
17 |
|
frlmvscadiccat.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
18 |
|
fconstg |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) : ( 0 ..^ 𝐿 ) ⟶ { 𝐴 } ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) : ( 0 ..^ 𝐿 ) ⟶ { 𝐴 } ) |
20 |
19
|
ffnd |
⊢ ( 𝜑 → ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) Fn ( 0 ..^ 𝐿 ) ) |
21 |
|
fconstg |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) : ( 0 ..^ 𝑀 ) ⟶ { 𝐴 } ) |
22 |
|
iswrdi |
⊢ ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) : ( 0 ..^ 𝑀 ) ⟶ { 𝐴 } → ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
23 |
17 21 22
|
3syl |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
24 |
|
fconstg |
⊢ ( 𝐴 ∈ 𝑆 → ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) : ( 0 ..^ 𝑁 ) ⟶ { 𝐴 } ) |
25 |
|
iswrdi |
⊢ ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) : ( 0 ..^ 𝑁 ) ⟶ { 𝐴 } → ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
26 |
17 24 25
|
3syl |
⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
27 |
|
ccatvalfn |
⊢ ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∈ Word { 𝐴 } ∧ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) → ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) Fn ( 0 ..^ ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) ) ) |
28 |
23 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) Fn ( 0 ..^ ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) ) ) |
29 |
|
fzofi |
⊢ ( 0 ..^ 𝑀 ) ∈ Fin |
30 |
|
snfi |
⊢ { 𝐴 } ∈ Fin |
31 |
|
hashxp |
⊢ ( ( ( 0 ..^ 𝑀 ) ∈ Fin ∧ { 𝐴 } ∈ Fin ) → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ { 𝐴 } ) ) ) |
32 |
29 30 31
|
mp2an |
⊢ ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ { 𝐴 } ) ) |
33 |
|
hashsng |
⊢ ( 𝐴 ∈ 𝑆 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
34 |
17 33
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝐴 } ) = 1 ) |
35 |
34
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · 1 ) ) |
36 |
|
hashcl |
⊢ ( ( 0 ..^ 𝑀 ) ∈ Fin → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ∈ ℕ0 ) |
37 |
29 36
|
mp1i |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ∈ ℕ0 ) |
38 |
37
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ∈ ℂ ) |
39 |
38
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · 1 ) = ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ) |
40 |
|
hashfzo0 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) = 𝑀 ) |
41 |
9 40
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) = 𝑀 ) |
42 |
35 39 41
|
3eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ { 𝐴 } ) ) = 𝑀 ) |
43 |
32 42
|
syl5eq |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = 𝑀 ) |
44 |
|
fzofi |
⊢ ( 0 ..^ 𝑁 ) ∈ Fin |
45 |
|
hashxp |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ Fin ∧ { 𝐴 } ∈ Fin ) → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · ( ♯ ‘ { 𝐴 } ) ) ) |
46 |
44 30 45
|
mp2an |
⊢ ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · ( ♯ ‘ { 𝐴 } ) ) |
47 |
34
|
oveq2d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · ( ♯ ‘ { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · 1 ) ) |
48 |
|
hashcl |
⊢ ( ( 0 ..^ 𝑁 ) ∈ Fin → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ∈ ℕ0 ) |
49 |
44 48
|
mp1i |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ∈ ℕ0 ) |
50 |
49
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ∈ ℂ ) |
51 |
50
|
mulid1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · 1 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
52 |
|
hashfzo0 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
53 |
10 52
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) |
54 |
47 51 53
|
3eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · ( ♯ ‘ { 𝐴 } ) ) = 𝑁 ) |
55 |
46 54
|
syl5eq |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) = 𝑁 ) |
56 |
43 55
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) = ( 𝑀 + 𝑁 ) ) |
57 |
56 8
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) = 𝐿 ) |
58 |
57
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) ) = ( 0 ..^ 𝐿 ) ) |
59 |
58
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) Fn ( 0 ..^ ( ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) + ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) ) ↔ ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) Fn ( 0 ..^ 𝐿 ) ) ) |
60 |
28 59
|
mpbid |
⊢ ( 𝜑 → ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) Fn ( 0 ..^ 𝐿 ) ) |
61 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = 𝑀 ) |
62 |
61
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑥 < ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ↔ 𝑥 < 𝑀 ) ) |
63 |
62
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → if ( 𝑥 < ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) = if ( 𝑥 < 𝑀 , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) ) |
64 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝐴 ∈ 𝑆 ) |
65 |
|
elfzouz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐿 ) → 𝑥 ∈ ( ℤ≥ ‘ 0 ) ) |
66 |
65
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → 𝑥 ∈ ( ℤ≥ ‘ 0 ) ) |
67 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → 𝑀 ∈ ℕ0 ) |
68 |
67
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → 𝑀 ∈ ℤ ) |
69 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → 𝑥 < 𝑀 ) |
70 |
|
elfzo2 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝑀 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀 ) ) |
71 |
66 68 69 70
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → 𝑥 ∈ ( 0 ..^ 𝑀 ) ) |
72 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑥 ∈ ( 0 ..^ 𝑀 ) ) → ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
73 |
64 71 72
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ 𝑥 < 𝑀 ) → ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
74 |
43
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = 𝑀 ) |
75 |
74
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) = ( 𝑥 − 𝑀 ) ) |
76 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → 𝑀 ∈ ℕ0 ) |
77 |
|
elfzonn0 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐿 ) → 𝑥 ∈ ℕ0 ) |
78 |
77
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → 𝑥 ∈ ℕ0 ) |
79 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑀 ∈ ℕ0 ) |
80 |
79
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑀 ∈ ℝ ) |
81 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐿 ) → 𝑥 ∈ ℤ ) |
82 |
81
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑥 ∈ ℤ ) |
83 |
82
|
zred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑥 ∈ ℝ ) |
84 |
80 83
|
lenltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑀 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑀 ) ) |
85 |
84
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → 𝑀 ≤ 𝑥 ) |
86 |
|
nn0sub2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ∧ 𝑀 ≤ 𝑥 ) → ( 𝑥 − 𝑀 ) ∈ ℕ0 ) |
87 |
76 78 85 86
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − 𝑀 ) ∈ ℕ0 ) |
88 |
|
elnn0uz |
⊢ ( ( 𝑥 − 𝑀 ) ∈ ℕ0 ↔ ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
89 |
87 88
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
90 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → 𝑁 ∈ ℕ0 ) |
91 |
90
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → 𝑁 ∈ ℤ ) |
92 |
|
elfzolt2 |
⊢ ( 𝑥 ∈ ( 0 ..^ 𝐿 ) → 𝑥 < 𝐿 ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑥 < 𝐿 ) |
94 |
80
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑀 ∈ ℂ ) |
95 |
83
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑥 ∈ ℂ ) |
96 |
94 95
|
pncan3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑀 + ( 𝑥 − 𝑀 ) ) = 𝑥 ) |
97 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑀 + 𝑁 ) = 𝐿 ) |
98 |
93 96 97
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑀 + ( 𝑥 − 𝑀 ) ) < ( 𝑀 + 𝑁 ) ) |
99 |
83 80
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑥 − 𝑀 ) ∈ ℝ ) |
100 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑁 ∈ ℕ0 ) |
101 |
100
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑁 ∈ ℝ ) |
102 |
99 101 80
|
ltadd2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑥 − 𝑀 ) < 𝑁 ↔ ( 𝑀 + ( 𝑥 − 𝑀 ) ) < ( 𝑀 + 𝑁 ) ) ) |
103 |
98 102
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑥 − 𝑀 ) < 𝑁 ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − 𝑀 ) < 𝑁 ) |
105 |
|
elfzo2 |
⊢ ( ( 𝑥 − 𝑀 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( ( 𝑥 − 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ∧ ( 𝑥 − 𝑀 ) < 𝑁 ) ) |
106 |
89 91 104 105
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − 𝑀 ) ∈ ( 0 ..^ 𝑁 ) ) |
107 |
75 106
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ∈ ( 0 ..^ 𝑁 ) ) |
108 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) = 𝐴 ) |
109 |
64 107 108
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) ∧ ¬ 𝑥 < 𝑀 ) → ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) = 𝐴 ) |
110 |
73 109
|
ifeqda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → if ( 𝑥 < 𝑀 , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) = 𝐴 ) |
111 |
63 110
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝐴 = if ( 𝑥 < ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) ) |
112 |
|
fvconst2g |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
113 |
17 112
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ‘ 𝑥 ) = 𝐴 ) |
114 |
64 21 22
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
115 |
64 24 25
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∈ Word { 𝐴 } ) |
116 |
|
ccatsymb |
⊢ ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∈ Word { 𝐴 } ∧ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∈ Word { 𝐴 } ∧ 𝑥 ∈ ℤ ) → ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ‘ 𝑥 ) = if ( 𝑥 < ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) ) |
117 |
114 115 82 116
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ‘ 𝑥 ) = if ( 𝑥 < ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) , ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ‘ 𝑥 ) , ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ‘ ( 𝑥 − ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) ) ) ) ) |
118 |
111 113 117
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ‘ 𝑥 ) = ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ‘ 𝑥 ) ) |
119 |
20 60 118
|
eqfnfvd |
⊢ ( 𝜑 → ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) = ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ) |
120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) ( 𝑈 ++ 𝑉 ) ) = ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ∘f ( .r ‘ 𝐾 ) ( 𝑈 ++ 𝑉 ) ) ) |
121 |
2 5 16
|
frlmfzowrd |
⊢ ( 𝑈 ∈ 𝐶 → 𝑈 ∈ Word 𝑆 ) |
122 |
11 121
|
syl |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝑆 ) |
123 |
3 6 16
|
frlmfzowrd |
⊢ ( 𝑉 ∈ 𝐷 → 𝑉 ∈ Word 𝑆 ) |
124 |
12 123
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ Word 𝑆 ) |
125 |
32 35
|
syl5eq |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · 1 ) ) |
126 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑀 ) ∈ V ) |
127 |
2 16 5
|
frlmbasf |
⊢ ( ( ( 0 ..^ 𝑀 ) ∈ V ∧ 𝑈 ∈ 𝐶 ) → 𝑈 : ( 0 ..^ 𝑀 ) ⟶ 𝑆 ) |
128 |
126 11 127
|
syl2anc |
⊢ ( 𝜑 → 𝑈 : ( 0 ..^ 𝑀 ) ⟶ 𝑆 ) |
129 |
128
|
ffnd |
⊢ ( 𝜑 → 𝑈 Fn ( 0 ..^ 𝑀 ) ) |
130 |
|
hashfn |
⊢ ( 𝑈 Fn ( 0 ..^ 𝑀 ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ) |
131 |
129 130
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ 𝑀 ) ) ) |
132 |
39 125 131
|
3eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ) = ( ♯ ‘ 𝑈 ) ) |
133 |
47 51
|
eqtrd |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 0 ..^ 𝑁 ) ) · ( ♯ ‘ { 𝐴 } ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
134 |
46 133
|
syl5eq |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
135 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) ∈ V ) |
136 |
3 16 6
|
frlmbasf |
⊢ ( ( ( 0 ..^ 𝑁 ) ∈ V ∧ 𝑉 ∈ 𝐷 ) → 𝑉 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
137 |
135 12 136
|
syl2anc |
⊢ ( 𝜑 → 𝑉 : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
138 |
137
|
ffnd |
⊢ ( 𝜑 → 𝑉 Fn ( 0 ..^ 𝑁 ) ) |
139 |
|
hashfn |
⊢ ( 𝑉 Fn ( 0 ..^ 𝑁 ) → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
140 |
138 139
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑉 ) = ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
141 |
134 140
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) = ( ♯ ‘ 𝑉 ) ) |
142 |
23 26 122 124 132 141
|
ofccat |
⊢ ( 𝜑 → ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ++ ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ) ∘f ( .r ‘ 𝐾 ) ( 𝑈 ++ 𝑉 ) ) = ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑈 ) ++ ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑉 ) ) ) |
143 |
120 142
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) ( 𝑈 ++ 𝑉 ) ) = ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑈 ) ++ ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑉 ) ) ) |
144 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝐿 ) ∈ V ) |
145 |
1 2 3 4 5 6 7 8 9 10 11 12
|
frlmfzoccat |
⊢ ( 𝜑 → ( 𝑈 ++ 𝑉 ) ∈ 𝐵 ) |
146 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
147 |
1 4 16 144 17 145 13 146
|
frlmvscafval |
⊢ ( 𝜑 → ( 𝐴 𝑂 ( 𝑈 ++ 𝑉 ) ) = ( ( ( 0 ..^ 𝐿 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) ( 𝑈 ++ 𝑉 ) ) ) |
148 |
2 5 16 126 17 11 14 146
|
frlmvscafval |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑈 ) = ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑈 ) ) |
149 |
3 6 16 135 17 12 15 146
|
frlmvscafval |
⊢ ( 𝜑 → ( 𝐴 · 𝑉 ) = ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑉 ) ) |
150 |
148 149
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 ∙ 𝑈 ) ++ ( 𝐴 · 𝑉 ) ) = ( ( ( ( 0 ..^ 𝑀 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑈 ) ++ ( ( ( 0 ..^ 𝑁 ) × { 𝐴 } ) ∘f ( .r ‘ 𝐾 ) 𝑉 ) ) ) |
151 |
143 147 150
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐴 𝑂 ( 𝑈 ++ 𝑉 ) ) = ( ( 𝐴 ∙ 𝑈 ) ++ ( 𝐴 · 𝑉 ) ) ) |