Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isubgr3stgr.u |
|- U = ( G NeighbVtx X ) |
3 |
|
isubgr3stgr.c |
|- C = ( G ClNeighbVtx X ) |
4 |
|
isubgr3stgr.n |
|- N e. NN0 |
5 |
|
isubgr3stgr.s |
|- S = ( StarGr ` N ) |
6 |
|
isubgr3stgr.w |
|- W = ( Vtx ` S ) |
7 |
|
isubgr3stgr.e |
|- E = ( Edg ` G ) |
8 |
|
isubgr3stgr.i |
|- I = ( Edg ` ( G ISubGr C ) ) |
9 |
|
isubgr3stgr.h |
|- H = ( i e. I |-> ( F " i ) ) |
10 |
|
stgredgel |
|- ( N e. NN0 -> ( J e. ( Edg ` ( StarGr ` N ) ) <-> ( J C_ ( 0 ... N ) /\ E. y e. ( 1 ... N ) J = { 0 , y } ) ) ) |
11 |
4 10
|
mp1i |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( J e. ( Edg ` ( StarGr ` N ) ) <-> ( J C_ ( 0 ... N ) /\ E. y e. ( 1 ... N ) J = { 0 , y } ) ) ) |
12 |
|
c0ex |
|- 0 e. _V |
13 |
12
|
a1i |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> 0 e. _V ) |
14 |
|
prssg |
|- ( ( 0 e. _V /\ y e. ( 1 ... N ) ) -> ( ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) <-> { 0 , y } C_ ( 0 ... N ) ) ) |
15 |
13 14
|
sylan |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) <-> { 0 , y } C_ ( 0 ... N ) ) ) |
16 |
|
f1ocnv |
|- ( F : C -1-1-onto-> W -> `' F : W -1-1-onto-> C ) |
17 |
|
f1ofn |
|- ( `' F : W -1-1-onto-> C -> `' F Fn W ) |
18 |
5
|
fveq2i |
|- ( Vtx ` S ) = ( Vtx ` ( StarGr ` N ) ) |
19 |
|
stgrvtx |
|- ( N e. NN0 -> ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) ) |
20 |
4 19
|
ax-mp |
|- ( Vtx ` ( StarGr ` N ) ) = ( 0 ... N ) |
21 |
6 18 20
|
3eqtri |
|- W = ( 0 ... N ) |
22 |
21
|
fneq2i |
|- ( `' F Fn W <-> `' F Fn ( 0 ... N ) ) |
23 |
17 22
|
sylib |
|- ( `' F : W -1-1-onto-> C -> `' F Fn ( 0 ... N ) ) |
24 |
16 23
|
syl |
|- ( F : C -1-1-onto-> W -> `' F Fn ( 0 ... N ) ) |
25 |
24
|
ad2antrl |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> `' F Fn ( 0 ... N ) ) |
26 |
25
|
adantr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> `' F Fn ( 0 ... N ) ) |
27 |
26
|
anim1i |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) -> ( `' F Fn ( 0 ... N ) /\ ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) ) |
28 |
|
3anass |
|- ( ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) <-> ( `' F Fn ( 0 ... N ) /\ ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) ) |
29 |
27 28
|
sylibr |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) -> ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) |
30 |
29
|
ex |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( ( 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) -> ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) ) |
31 |
15 30
|
sylbird |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( { 0 , y } C_ ( 0 ... N ) -> ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) ) |
32 |
31
|
imp |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) ) |
33 |
|
fnimapr |
|- ( ( `' F Fn ( 0 ... N ) /\ 0 e. ( 0 ... N ) /\ y e. ( 0 ... N ) ) -> ( `' F " { 0 , y } ) = { ( `' F ` 0 ) , ( `' F ` y ) } ) |
34 |
32 33
|
syl |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> ( `' F " { 0 , y } ) = { ( `' F ` 0 ) , ( `' F ` y ) } ) |
35 |
1
|
clnbgrvtxel |
|- ( X e. V -> X e. ( G ClNeighbVtx X ) ) |
36 |
35
|
adantl |
|- ( ( G e. USGraph /\ X e. V ) -> X e. ( G ClNeighbVtx X ) ) |
37 |
36 3
|
eleqtrrdi |
|- ( ( G e. USGraph /\ X e. V ) -> X e. C ) |
38 |
|
simpl |
|- ( ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) -> F : C -1-1-onto-> W ) |
39 |
37 38
|
anim12ci |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( F : C -1-1-onto-> W /\ X e. C ) ) |
40 |
|
simprr |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( F ` X ) = 0 ) |
41 |
39 40
|
jca |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( ( F : C -1-1-onto-> W /\ X e. C ) /\ ( F ` X ) = 0 ) ) |
42 |
41
|
adantr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( ( F : C -1-1-onto-> W /\ X e. C ) /\ ( F ` X ) = 0 ) ) |
43 |
|
f1ocnvfv |
|- ( ( F : C -1-1-onto-> W /\ X e. C ) -> ( ( F ` X ) = 0 -> ( `' F ` 0 ) = X ) ) |
44 |
43
|
imp |
|- ( ( ( F : C -1-1-onto-> W /\ X e. C ) /\ ( F ` X ) = 0 ) -> ( `' F ` 0 ) = X ) |
45 |
42 44
|
syl |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( `' F ` 0 ) = X ) |
46 |
35 3
|
eleqtrrdi |
|- ( X e. V -> X e. C ) |
47 |
46
|
ad3antlr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> X e. C ) |
48 |
|
f1of |
|- ( `' F : W -1-1-onto-> C -> `' F : W --> C ) |
49 |
16 48
|
syl |
|- ( F : C -1-1-onto-> W -> `' F : W --> C ) |
50 |
49
|
ad2antrl |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> `' F : W --> C ) |
51 |
50
|
adantr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> `' F : W --> C ) |
52 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
53 |
52
|
sseli |
|- ( y e. ( 1 ... N ) -> y e. ( 0 ... N ) ) |
54 |
53 21
|
eleqtrrdi |
|- ( y e. ( 1 ... N ) -> y e. W ) |
55 |
54
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> y e. W ) |
56 |
51 55
|
ffvelcdmd |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( `' F ` y ) e. C ) |
57 |
47 56
|
jca |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( X e. C /\ ( `' F ` y ) e. C ) ) |
58 |
3
|
eleq2i |
|- ( ( `' F ` y ) e. C <-> ( `' F ` y ) e. ( G ClNeighbVtx X ) ) |
59 |
|
usgrupgr |
|- ( G e. USGraph -> G e. UPGraph ) |
60 |
59
|
anim1i |
|- ( ( G e. USGraph /\ X e. V ) -> ( G e. UPGraph /\ X e. V ) ) |
61 |
60
|
ad2antrr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( G e. UPGraph /\ X e. V ) ) |
62 |
1
|
clnbgrssvtx |
|- ( G ClNeighbVtx X ) C_ V |
63 |
3 62
|
eqsstri |
|- C C_ V |
64 |
63 56
|
sselid |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( `' F ` y ) e. V ) |
65 |
|
df-3an |
|- ( ( G e. UPGraph /\ X e. V /\ ( `' F ` y ) e. V ) <-> ( ( G e. UPGraph /\ X e. V ) /\ ( `' F ` y ) e. V ) ) |
66 |
61 64 65
|
sylanbrc |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( G e. UPGraph /\ X e. V /\ ( `' F ` y ) e. V ) ) |
67 |
66
|
ad2antrr |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( G e. UPGraph /\ X e. V /\ ( `' F ` y ) e. V ) ) |
68 |
1 7
|
clnbupgrel |
|- ( ( G e. UPGraph /\ X e. V /\ ( `' F ` y ) e. V ) -> ( ( `' F ` y ) e. ( G ClNeighbVtx X ) <-> ( ( `' F ` y ) = X \/ { ( `' F ` y ) , X } e. E ) ) ) |
69 |
67 68
|
syl |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( ( `' F ` y ) e. ( G ClNeighbVtx X ) <-> ( ( `' F ` y ) = X \/ { ( `' F ` y ) , X } e. E ) ) ) |
70 |
58 69
|
bitrid |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( ( `' F ` y ) e. C <-> ( ( `' F ` y ) = X \/ { ( `' F ` y ) , X } e. E ) ) ) |
71 |
|
eqeq2 |
|- ( ( `' F ` 0 ) = X -> ( ( `' F ` y ) = ( `' F ` 0 ) <-> ( `' F ` y ) = X ) ) |
72 |
71
|
adantl |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( ( `' F ` y ) = ( `' F ` 0 ) <-> ( `' F ` y ) = X ) ) |
73 |
|
f1of1 |
|- ( `' F : W -1-1-onto-> C -> `' F : W -1-1-> C ) |
74 |
16 73
|
syl |
|- ( F : C -1-1-onto-> W -> `' F : W -1-1-> C ) |
75 |
74
|
ad2antrl |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> `' F : W -1-1-> C ) |
76 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
77 |
4 76
|
ax-mp |
|- 0 e. ( 0 ... N ) |
78 |
77 21
|
eleqtrri |
|- 0 e. W |
79 |
54 78
|
jctir |
|- ( y e. ( 1 ... N ) -> ( y e. W /\ 0 e. W ) ) |
80 |
|
f1veqaeq |
|- ( ( `' F : W -1-1-> C /\ ( y e. W /\ 0 e. W ) ) -> ( ( `' F ` y ) = ( `' F ` 0 ) -> y = 0 ) ) |
81 |
75 79 80
|
syl2an |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( ( `' F ` y ) = ( `' F ` 0 ) -> y = 0 ) ) |
82 |
|
elfznn |
|- ( y e. ( 1 ... N ) -> y e. NN ) |
83 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
84 |
|
eqneqall |
|- ( y = 0 -> ( y =/= 0 -> { X , ( `' F ` y ) } e. E ) ) |
85 |
83 84
|
syl5com |
|- ( y e. NN -> ( y = 0 -> { X , ( `' F ` y ) } e. E ) ) |
86 |
82 85
|
syl |
|- ( y e. ( 1 ... N ) -> ( y = 0 -> { X , ( `' F ` y ) } e. E ) ) |
87 |
86
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( y = 0 -> { X , ( `' F ` y ) } e. E ) ) |
88 |
81 87
|
syld |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( ( `' F ` y ) = ( `' F ` 0 ) -> { X , ( `' F ` y ) } e. E ) ) |
89 |
88
|
adantr |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( ( `' F ` y ) = ( `' F ` 0 ) -> { X , ( `' F ` y ) } e. E ) ) |
90 |
72 89
|
sylbird |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( ( `' F ` y ) = X -> { X , ( `' F ` y ) } e. E ) ) |
91 |
90
|
adantr |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( ( `' F ` y ) = X -> { X , ( `' F ` y ) } e. E ) ) |
92 |
|
prcom |
|- { ( `' F ` y ) , X } = { X , ( `' F ` y ) } |
93 |
92
|
eleq1i |
|- ( { ( `' F ` y ) , X } e. E <-> { X , ( `' F ` y ) } e. E ) |
94 |
93
|
biimpi |
|- ( { ( `' F ` y ) , X } e. E -> { X , ( `' F ` y ) } e. E ) |
95 |
94
|
a1i |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( { ( `' F ` y ) , X } e. E -> { X , ( `' F ` y ) } e. E ) ) |
96 |
91 95
|
jaod |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( ( ( `' F ` y ) = X \/ { ( `' F ` y ) , X } e. E ) -> { X , ( `' F ` y ) } e. E ) ) |
97 |
70 96
|
sylbid |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ X e. C ) -> ( ( `' F ` y ) e. C -> { X , ( `' F ` y ) } e. E ) ) |
98 |
97
|
impr |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ ( X e. C /\ ( `' F ` y ) e. C ) ) -> { X , ( `' F ` y ) } e. E ) |
99 |
|
prssi |
|- ( ( X e. C /\ ( `' F ` y ) e. C ) -> { X , ( `' F ` y ) } C_ C ) |
100 |
99
|
adantl |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ ( X e. C /\ ( `' F ` y ) e. C ) ) -> { X , ( `' F ` y ) } C_ C ) |
101 |
98 100
|
jca |
|- ( ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) /\ ( X e. C /\ ( `' F ` y ) e. C ) ) -> ( { X , ( `' F ` y ) } e. E /\ { X , ( `' F ` y ) } C_ C ) ) |
102 |
57 101
|
mpidan |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( { X , ( `' F ` y ) } e. E /\ { X , ( `' F ` y ) } C_ C ) ) |
103 |
|
preq1 |
|- ( ( `' F ` 0 ) = X -> { ( `' F ` 0 ) , ( `' F ` y ) } = { X , ( `' F ` y ) } ) |
104 |
103
|
eleq1d |
|- ( ( `' F ` 0 ) = X -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E <-> { X , ( `' F ` y ) } e. E ) ) |
105 |
103
|
sseq1d |
|- ( ( `' F ` 0 ) = X -> ( { ( `' F ` 0 ) , ( `' F ` y ) } C_ C <-> { X , ( `' F ` y ) } C_ C ) ) |
106 |
104 105
|
anbi12d |
|- ( ( `' F ` 0 ) = X -> ( ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) <-> ( { X , ( `' F ` y ) } e. E /\ { X , ( `' F ` y ) } C_ C ) ) ) |
107 |
106
|
adantl |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) <-> ( { X , ( `' F ` y ) } e. E /\ { X , ( `' F ` y ) } C_ C ) ) ) |
108 |
102 107
|
mpbird |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ ( `' F ` 0 ) = X ) -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) ) |
109 |
45 108
|
mpdan |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) ) |
110 |
109
|
adantr |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) ) |
111 |
|
usgruhgr |
|- ( G e. USGraph -> G e. UHGraph ) |
112 |
111
|
ad3antrrr |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> G e. UHGraph ) |
113 |
63
|
a1i |
|- ( { 0 , y } C_ ( 0 ... N ) -> C C_ V ) |
114 |
|
eqid |
|- ( G ISubGr C ) = ( G ISubGr C ) |
115 |
1 7 114 8
|
isubgredg |
|- ( ( G e. UHGraph /\ C C_ V ) -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. I <-> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) ) ) |
116 |
112 113 115
|
syl2an |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. I <-> ( { ( `' F ` 0 ) , ( `' F ` y ) } e. E /\ { ( `' F ` 0 ) , ( `' F ` y ) } C_ C ) ) ) |
117 |
110 116
|
mpbird |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> { ( `' F ` 0 ) , ( `' F ` y ) } e. I ) |
118 |
34 117
|
eqeltrd |
|- ( ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) /\ { 0 , y } C_ ( 0 ... N ) ) -> ( `' F " { 0 , y } ) e. I ) |
119 |
118
|
ex |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( { 0 , y } C_ ( 0 ... N ) -> ( `' F " { 0 , y } ) e. I ) ) |
120 |
|
sseq1 |
|- ( J = { 0 , y } -> ( J C_ ( 0 ... N ) <-> { 0 , y } C_ ( 0 ... N ) ) ) |
121 |
|
imaeq2 |
|- ( J = { 0 , y } -> ( `' F " J ) = ( `' F " { 0 , y } ) ) |
122 |
121
|
eleq1d |
|- ( J = { 0 , y } -> ( ( `' F " J ) e. I <-> ( `' F " { 0 , y } ) e. I ) ) |
123 |
120 122
|
imbi12d |
|- ( J = { 0 , y } -> ( ( J C_ ( 0 ... N ) -> ( `' F " J ) e. I ) <-> ( { 0 , y } C_ ( 0 ... N ) -> ( `' F " { 0 , y } ) e. I ) ) ) |
124 |
119 123
|
syl5ibrcom |
|- ( ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) /\ y e. ( 1 ... N ) ) -> ( J = { 0 , y } -> ( J C_ ( 0 ... N ) -> ( `' F " J ) e. I ) ) ) |
125 |
124
|
rexlimdva |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( E. y e. ( 1 ... N ) J = { 0 , y } -> ( J C_ ( 0 ... N ) -> ( `' F " J ) e. I ) ) ) |
126 |
125
|
impcomd |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( ( J C_ ( 0 ... N ) /\ E. y e. ( 1 ... N ) J = { 0 , y } ) -> ( `' F " J ) e. I ) ) |
127 |
11 126
|
sylbid |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) ) -> ( J e. ( Edg ` ( StarGr ` N ) ) -> ( `' F " J ) e. I ) ) |
128 |
127
|
3impia |
|- ( ( ( G e. USGraph /\ X e. V ) /\ ( F : C -1-1-onto-> W /\ ( F ` X ) = 0 ) /\ J e. ( Edg ` ( StarGr ` N ) ) ) -> ( `' F " J ) e. I ) |