Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> A e. On ) |
2 |
|
naddcl |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
3 |
2
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) e. On ) |
4 |
|
intmin |
|- ( A e. On -> |^| { a e. On | A C_ a } = A ) |
5 |
4
|
eqcomd |
|- ( A e. On -> A = |^| { a e. On | A C_ a } ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> A = |^| { a e. On | A C_ a } ) |
7 |
|
naddov3 |
|- ( ( B e. On /\ C e. On ) -> ( B +no C ) = |^| { p e. On | ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) C_ p } ) |
8 |
7
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B +no C ) = |^| { p e. On | ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) C_ p } ) |
9 |
1 3 6 8
|
naddunif |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no ( B +no C ) ) = |^| { x e. On | ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x } ) |
10 |
|
3anass |
|- ( ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) <-> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) ) ) |
11 |
|
unss |
|- ( ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x ) <-> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) u. ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) C_ x ) |
12 |
|
ancom |
|- ( ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) <-> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x ) ) |
13 |
|
xpundi |
|- ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) = ( ( { A } X. ( +no " ( { B } X. C ) ) ) u. ( { A } X. ( +no " ( B X. { C } ) ) ) ) |
14 |
13
|
imaeq2i |
|- ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) = ( +no " ( ( { A } X. ( +no " ( { B } X. C ) ) ) u. ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) |
15 |
|
imaundi |
|- ( +no " ( ( { A } X. ( +no " ( { B } X. C ) ) ) u. ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) = ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) u. ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) |
16 |
14 15
|
eqtri |
|- ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) = ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) u. ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) |
17 |
16
|
sseq1i |
|- ( ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) C_ x <-> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) u. ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) ) C_ x ) |
18 |
11 12 17
|
3bitr4i |
|- ( ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) <-> ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) C_ x ) |
19 |
18
|
anbi2i |
|- ( ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) ) <-> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) C_ x ) ) |
20 |
|
unss |
|- ( ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) C_ x ) <-> ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x ) |
21 |
10 19 20
|
3bitrri |
|- ( ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x <-> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) ) |
22 |
|
naddfn |
|- +no Fn ( On X. On ) |
23 |
|
fnfun |
|- ( +no Fn ( On X. On ) -> Fun +no ) |
24 |
22 23
|
ax-mp |
|- Fun +no |
25 |
|
onss |
|- ( A e. On -> A C_ On ) |
26 |
25
|
3ad2ant1 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> A C_ On ) |
27 |
3
|
adantr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( B +no C ) e. On ) |
28 |
27
|
snssd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> { ( B +no C ) } C_ On ) |
29 |
|
xpss12 |
|- ( ( A C_ On /\ { ( B +no C ) } C_ On ) -> ( A X. { ( B +no C ) } ) C_ ( On X. On ) ) |
30 |
26 28 29
|
syl2an2r |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A X. { ( B +no C ) } ) C_ ( On X. On ) ) |
31 |
22
|
fndmi |
|- dom +no = ( On X. On ) |
32 |
30 31
|
sseqtrrdi |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A X. { ( B +no C ) } ) C_ dom +no ) |
33 |
|
funimassov |
|- ( ( Fun +no /\ ( A X. { ( B +no C ) } ) C_ dom +no ) -> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x <-> A. a e. A A. p e. { ( B +no C ) } ( a +no p ) e. x ) ) |
34 |
24 32 33
|
sylancr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x <-> A. a e. A A. p e. { ( B +no C ) } ( a +no p ) e. x ) ) |
35 |
|
ovex |
|- ( B +no C ) e. _V |
36 |
|
oveq2 |
|- ( p = ( B +no C ) -> ( a +no p ) = ( a +no ( B +no C ) ) ) |
37 |
36
|
eleq1d |
|- ( p = ( B +no C ) -> ( ( a +no p ) e. x <-> ( a +no ( B +no C ) ) e. x ) ) |
38 |
35 37
|
ralsn |
|- ( A. p e. { ( B +no C ) } ( a +no p ) e. x <-> ( a +no ( B +no C ) ) e. x ) |
39 |
38
|
ralbii |
|- ( A. a e. A A. p e. { ( B +no C ) } ( a +no p ) e. x <-> A. a e. A ( a +no ( B +no C ) ) e. x ) |
40 |
34 39
|
bitrdi |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x <-> A. a e. A ( a +no ( B +no C ) ) e. x ) ) |
41 |
|
simpl1 |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> A e. On ) |
42 |
41
|
snssd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> { A } C_ On ) |
43 |
|
imassrn |
|- ( +no " ( B X. { C } ) ) C_ ran +no |
44 |
|
naddf |
|- +no : ( On X. On ) --> On |
45 |
|
frn |
|- ( +no : ( On X. On ) --> On -> ran +no C_ On ) |
46 |
44 45
|
ax-mp |
|- ran +no C_ On |
47 |
43 46
|
sstri |
|- ( +no " ( B X. { C } ) ) C_ On |
48 |
|
xpss12 |
|- ( ( { A } C_ On /\ ( +no " ( B X. { C } ) ) C_ On ) -> ( { A } X. ( +no " ( B X. { C } ) ) ) C_ ( On X. On ) ) |
49 |
42 47 48
|
sylancl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( { A } X. ( +no " ( B X. { C } ) ) ) C_ ( On X. On ) ) |
50 |
49 31
|
sseqtrrdi |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( { A } X. ( +no " ( B X. { C } ) ) ) C_ dom +no ) |
51 |
|
funimassov |
|- ( ( Fun +no /\ ( { A } X. ( +no " ( B X. { C } ) ) ) C_ dom +no ) -> ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x <-> A. a e. { A } A. p e. ( +no " ( B X. { C } ) ) ( a +no p ) e. x ) ) |
52 |
24 50 51
|
sylancr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x <-> A. a e. { A } A. p e. ( +no " ( B X. { C } ) ) ( a +no p ) e. x ) ) |
53 |
|
oveq1 |
|- ( a = A -> ( a +no p ) = ( A +no p ) ) |
54 |
53
|
eleq1d |
|- ( a = A -> ( ( a +no p ) e. x <-> ( A +no p ) e. x ) ) |
55 |
54
|
ralbidv |
|- ( a = A -> ( A. p e. ( +no " ( B X. { C } ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x ) ) |
56 |
55
|
ralsng |
|- ( A e. On -> ( A. a e. { A } A. p e. ( +no " ( B X. { C } ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x ) ) |
57 |
41 56
|
syl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. a e. { A } A. p e. ( +no " ( B X. { C } ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x ) ) |
58 |
|
onss |
|- ( B e. On -> B C_ On ) |
59 |
58
|
3ad2ant2 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> B C_ On ) |
60 |
|
simpl3 |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> C e. On ) |
61 |
60
|
snssd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> { C } C_ On ) |
62 |
|
xpss12 |
|- ( ( B C_ On /\ { C } C_ On ) -> ( B X. { C } ) C_ ( On X. On ) ) |
63 |
59 61 62
|
syl2an2r |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( B X. { C } ) C_ ( On X. On ) ) |
64 |
|
oveq2 |
|- ( p = ( b +no c ) -> ( A +no p ) = ( A +no ( b +no c ) ) ) |
65 |
64
|
eleq1d |
|- ( p = ( b +no c ) -> ( ( A +no p ) e. x <-> ( A +no ( b +no c ) ) e. x ) ) |
66 |
65
|
imaeqalov |
|- ( ( +no Fn ( On X. On ) /\ ( B X. { C } ) C_ ( On X. On ) ) -> ( A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x <-> A. b e. B A. c e. { C } ( A +no ( b +no c ) ) e. x ) ) |
67 |
22 63 66
|
sylancr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x <-> A. b e. B A. c e. { C } ( A +no ( b +no c ) ) e. x ) ) |
68 |
|
oveq2 |
|- ( c = C -> ( b +no c ) = ( b +no C ) ) |
69 |
68
|
oveq2d |
|- ( c = C -> ( A +no ( b +no c ) ) = ( A +no ( b +no C ) ) ) |
70 |
69
|
eleq1d |
|- ( c = C -> ( ( A +no ( b +no c ) ) e. x <-> ( A +no ( b +no C ) ) e. x ) ) |
71 |
70
|
ralsng |
|- ( C e. On -> ( A. c e. { C } ( A +no ( b +no c ) ) e. x <-> ( A +no ( b +no C ) ) e. x ) ) |
72 |
60 71
|
syl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. c e. { C } ( A +no ( b +no c ) ) e. x <-> ( A +no ( b +no C ) ) e. x ) ) |
73 |
72
|
ralbidv |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. b e. B A. c e. { C } ( A +no ( b +no c ) ) e. x <-> A. b e. B ( A +no ( b +no C ) ) e. x ) ) |
74 |
67 73
|
bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. p e. ( +no " ( B X. { C } ) ) ( A +no p ) e. x <-> A. b e. B ( A +no ( b +no C ) ) e. x ) ) |
75 |
52 57 74
|
3bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x <-> A. b e. B ( A +no ( b +no C ) ) e. x ) ) |
76 |
|
imassrn |
|- ( +no " ( { B } X. C ) ) C_ ran +no |
77 |
76 46
|
sstri |
|- ( +no " ( { B } X. C ) ) C_ On |
78 |
|
xpss12 |
|- ( ( { A } C_ On /\ ( +no " ( { B } X. C ) ) C_ On ) -> ( { A } X. ( +no " ( { B } X. C ) ) ) C_ ( On X. On ) ) |
79 |
42 77 78
|
sylancl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( { A } X. ( +no " ( { B } X. C ) ) ) C_ ( On X. On ) ) |
80 |
79 31
|
sseqtrrdi |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( { A } X. ( +no " ( { B } X. C ) ) ) C_ dom +no ) |
81 |
|
funimassov |
|- ( ( Fun +no /\ ( { A } X. ( +no " ( { B } X. C ) ) ) C_ dom +no ) -> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x <-> A. a e. { A } A. p e. ( +no " ( { B } X. C ) ) ( a +no p ) e. x ) ) |
82 |
24 80 81
|
sylancr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x <-> A. a e. { A } A. p e. ( +no " ( { B } X. C ) ) ( a +no p ) e. x ) ) |
83 |
54
|
ralbidv |
|- ( a = A -> ( A. p e. ( +no " ( { B } X. C ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x ) ) |
84 |
83
|
ralsng |
|- ( A e. On -> ( A. a e. { A } A. p e. ( +no " ( { B } X. C ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x ) ) |
85 |
41 84
|
syl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. a e. { A } A. p e. ( +no " ( { B } X. C ) ) ( a +no p ) e. x <-> A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x ) ) |
86 |
|
simpl2 |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> B e. On ) |
87 |
86
|
snssd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> { B } C_ On ) |
88 |
|
onss |
|- ( C e. On -> C C_ On ) |
89 |
88
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> C C_ On ) |
90 |
89
|
adantr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> C C_ On ) |
91 |
|
xpss12 |
|- ( ( { B } C_ On /\ C C_ On ) -> ( { B } X. C ) C_ ( On X. On ) ) |
92 |
87 90 91
|
syl2anc |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( { B } X. C ) C_ ( On X. On ) ) |
93 |
65
|
imaeqalov |
|- ( ( +no Fn ( On X. On ) /\ ( { B } X. C ) C_ ( On X. On ) ) -> ( A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x <-> A. b e. { B } A. c e. C ( A +no ( b +no c ) ) e. x ) ) |
94 |
22 92 93
|
sylancr |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x <-> A. b e. { B } A. c e. C ( A +no ( b +no c ) ) e. x ) ) |
95 |
|
oveq1 |
|- ( b = B -> ( b +no c ) = ( B +no c ) ) |
96 |
95
|
oveq2d |
|- ( b = B -> ( A +no ( b +no c ) ) = ( A +no ( B +no c ) ) ) |
97 |
96
|
eleq1d |
|- ( b = B -> ( ( A +no ( b +no c ) ) e. x <-> ( A +no ( B +no c ) ) e. x ) ) |
98 |
97
|
ralbidv |
|- ( b = B -> ( A. c e. C ( A +no ( b +no c ) ) e. x <-> A. c e. C ( A +no ( B +no c ) ) e. x ) ) |
99 |
98
|
ralsng |
|- ( B e. On -> ( A. b e. { B } A. c e. C ( A +no ( b +no c ) ) e. x <-> A. c e. C ( A +no ( B +no c ) ) e. x ) ) |
100 |
86 99
|
syl |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. b e. { B } A. c e. C ( A +no ( b +no c ) ) e. x <-> A. c e. C ( A +no ( B +no c ) ) e. x ) ) |
101 |
94 100
|
bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( A. p e. ( +no " ( { B } X. C ) ) ( A +no p ) e. x <-> A. c e. C ( A +no ( B +no c ) ) e. x ) ) |
102 |
82 85 101
|
3bitrd |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x <-> A. c e. C ( A +no ( B +no c ) ) e. x ) ) |
103 |
40 75 102
|
3anbi123d |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( ( +no " ( A X. { ( B +no C ) } ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( B X. { C } ) ) ) ) C_ x /\ ( +no " ( { A } X. ( +no " ( { B } X. C ) ) ) ) C_ x ) <-> ( A. a e. A ( a +no ( B +no C ) ) e. x /\ A. b e. B ( A +no ( b +no C ) ) e. x /\ A. c e. C ( A +no ( B +no c ) ) e. x ) ) ) |
104 |
21 103
|
bitrid |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ x e. On ) -> ( ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x <-> ( A. a e. A ( a +no ( B +no C ) ) e. x /\ A. b e. B ( A +no ( b +no C ) ) e. x /\ A. c e. C ( A +no ( B +no c ) ) e. x ) ) ) |
105 |
104
|
rabbidva |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> { x e. On | ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x } = { x e. On | ( A. a e. A ( a +no ( B +no C ) ) e. x /\ A. b e. B ( A +no ( b +no C ) ) e. x /\ A. c e. C ( A +no ( B +no c ) ) e. x ) } ) |
106 |
105
|
inteqd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> |^| { x e. On | ( ( +no " ( A X. { ( B +no C ) } ) ) u. ( +no " ( { A } X. ( ( +no " ( { B } X. C ) ) u. ( +no " ( B X. { C } ) ) ) ) ) ) C_ x } = |^| { x e. On | ( A. a e. A ( a +no ( B +no C ) ) e. x /\ A. b e. B ( A +no ( b +no C ) ) e. x /\ A. c e. C ( A +no ( B +no c ) ) e. x ) } ) |
107 |
9 106
|
eqtrd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A +no ( B +no C ) ) = |^| { x e. On | ( A. a e. A ( a +no ( B +no C ) ) e. x /\ A. b e. B ( A +no ( b +no C ) ) e. x /\ A. c e. C ( A +no ( B +no c ) ) e. x ) } ) |