| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem4.g |  |-  G = ( SymGrp ` D ) | 
						
							| 2 |  | psgnunilem4.t |  |-  T = ran ( pmTrsp ` D ) | 
						
							| 3 |  | psgnunilem4.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | psgnunilem4.w1 |  |-  ( ph -> W e. Word T ) | 
						
							| 5 |  | psgnunilem4.w2 |  |-  ( ph -> ( G gsum W ) = ( _I |` D ) ) | 
						
							| 6 |  | wrdfin |  |-  ( W e. Word T -> W e. Fin ) | 
						
							| 7 |  | hashcl |  |-  ( W e. Fin -> ( # ` W ) e. NN0 ) | 
						
							| 8 | 4 6 7 | 3syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 9 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 10 | 8 9 | eleqtrdi |  |-  ( ph -> ( # ` W ) e. ( ZZ>= ` 0 ) ) | 
						
							| 11 |  | fveq2 |  |-  ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) | 
						
							| 12 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( w = (/) -> ( # ` w ) = 0 ) | 
						
							| 14 | 13 | oveq2d |  |-  ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 15 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 16 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 18 | 14 17 | eqtrdi |  |-  ( w = (/) -> ( -u 1 ^ ( # ` w ) ) = 1 ) | 
						
							| 19 | 18 | 2a1d |  |-  ( w = (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 20 |  | simpl1 |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ph ) | 
						
							| 21 | 20 3 | syl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> D e. V ) | 
						
							| 22 |  | simpl3l |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Word T ) | 
						
							| 23 |  | eqidd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) = ( # ` w ) ) | 
						
							| 24 |  | wrdfin |  |-  ( w e. Word T -> w e. Fin ) | 
						
							| 25 | 22 24 | syl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w e. Fin ) | 
						
							| 26 |  | simpl2 |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> w =/= (/) ) | 
						
							| 27 |  | hashnncl |  |-  ( w e. Fin -> ( ( # ` w ) e. NN <-> w =/= (/) ) ) | 
						
							| 28 | 27 | biimpar |  |-  ( ( w e. Fin /\ w =/= (/) ) -> ( # ` w ) e. NN ) | 
						
							| 29 | 25 26 28 | syl2anc |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) | 
						
							| 30 |  | simpl3r |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( G gsum w ) = ( _I |` D ) ) | 
						
							| 31 |  | fveqeq2 |  |-  ( x = y -> ( ( # ` x ) = ( ( # ` w ) - 2 ) <-> ( # ` y ) = ( ( # ` w ) - 2 ) ) ) | 
						
							| 32 |  | oveq2 |  |-  ( x = y -> ( G gsum x ) = ( G gsum y ) ) | 
						
							| 33 | 32 | eqeq1d |  |-  ( x = y -> ( ( G gsum x ) = ( _I |` D ) <-> ( G gsum y ) = ( _I |` D ) ) ) | 
						
							| 34 | 31 33 | anbi12d |  |-  ( x = y -> ( ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) ) | 
						
							| 35 | 34 | cbvrexvw |  |-  ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) | 
						
							| 36 | 35 | notbii |  |-  ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) | 
						
							| 37 | 36 | biimpi |  |-  ( -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> -. E. y e. Word T ( ( # ` y ) = ( ( # ` w ) - 2 ) /\ ( G gsum y ) = ( _I |` D ) ) ) | 
						
							| 39 | 1 2 21 22 23 29 30 38 | psgnunilem3 |  |-  -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 40 |  | iman |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) <-> -. ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ -. E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) | 
						
							| 41 | 39 40 | mpbir |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 42 |  | df-rex |  |-  ( E. x e. Word T ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) <-> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) | 
						
							| 43 | 41 42 | sylib |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) | 
						
							| 44 |  | simprl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> x e. Word T ) | 
						
							| 45 |  | simprrr |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( G gsum x ) = ( _I |` D ) ) | 
						
							| 46 | 44 45 | jca |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 47 |  | wrdfin |  |-  ( x e. Word T -> x e. Fin ) | 
						
							| 48 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 49 | 44 47 48 | 3syl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. NN0 ) | 
						
							| 50 |  | simp3l |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Word T ) | 
						
							| 51 | 50 24 | syl |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w e. Fin ) | 
						
							| 52 |  | simp2 |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> w =/= (/) ) | 
						
							| 53 | 51 52 28 | syl2anc |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( # ` w ) e. NN ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. NN ) | 
						
							| 55 |  | simprrl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) = ( ( # ` w ) - 2 ) ) | 
						
							| 56 | 54 | nnred |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. RR ) | 
						
							| 57 |  | 2rp |  |-  2 e. RR+ | 
						
							| 58 |  | ltsubrp |  |-  ( ( ( # ` w ) e. RR /\ 2 e. RR+ ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) | 
						
							| 59 | 56 57 58 | sylancl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( # ` w ) - 2 ) < ( # ` w ) ) | 
						
							| 60 | 55 59 | eqbrtrd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) < ( # ` w ) ) | 
						
							| 61 |  | elfzo0 |  |-  ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) <-> ( ( # ` x ) e. NN0 /\ ( # ` w ) e. NN /\ ( # ` x ) < ( # ` w ) ) ) | 
						
							| 62 | 49 54 60 61 | syl3anbrc |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` x ) e. ( 0 ..^ ( # ` w ) ) ) | 
						
							| 63 |  | id |  |-  ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) | 
						
							| 64 | 63 | com13 |  |-  ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) | 
						
							| 65 | 46 62 64 | sylc |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) | 
						
							| 66 | 55 | oveq2d |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( ( # ` w ) - 2 ) ) ) | 
						
							| 67 | 15 | a1i |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 e. CC ) | 
						
							| 68 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 69 | 68 | a1i |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> -u 1 =/= 0 ) | 
						
							| 70 |  | 2z |  |-  2 e. ZZ | 
						
							| 71 | 70 | a1i |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> 2 e. ZZ ) | 
						
							| 72 | 54 | nnzd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( # ` w ) e. ZZ ) | 
						
							| 73 | 67 69 71 72 | expsubd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( ( # ` w ) - 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) ) | 
						
							| 74 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 75 | 74 | oveq2i |  |-  ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( ( -u 1 ^ ( # ` w ) ) / 1 ) | 
						
							| 76 |  | m1expcl |  |-  ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. ZZ ) | 
						
							| 77 | 76 | zcnd |  |-  ( ( # ` w ) e. ZZ -> ( -u 1 ^ ( # ` w ) ) e. CC ) | 
						
							| 78 | 72 77 | syl |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` w ) ) e. CC ) | 
						
							| 79 | 78 | div1d |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / 1 ) = ( -u 1 ^ ( # ` w ) ) ) | 
						
							| 80 | 75 79 | eqtrid |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` w ) ) / ( -u 1 ^ 2 ) ) = ( -u 1 ^ ( # ` w ) ) ) | 
						
							| 81 | 66 73 80 | 3eqtrd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( -u 1 ^ ( # ` x ) ) = ( -u 1 ^ ( # ` w ) ) ) | 
						
							| 82 | 81 | eqeq1d |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( -u 1 ^ ( # ` x ) ) = 1 <-> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 83 | 65 82 | sylibd |  |-  ( ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) /\ ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 84 | 83 | ex |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 85 | 84 | com23 |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 86 | 85 | alimdv |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 87 |  | 19.23v |  |-  ( A. x ( ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 88 | 86 87 | imbitrdi |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( E. x ( x e. Word T /\ ( ( # ` x ) = ( ( # ` w ) - 2 ) /\ ( G gsum x ) = ( _I |` D ) ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 89 | 43 88 | mpid |  |-  ( ( ph /\ w =/= (/) /\ ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 90 | 89 | 3exp |  |-  ( ph -> ( w =/= (/) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) | 
						
							| 91 | 90 | com34 |  |-  ( ph -> ( w =/= (/) -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) | 
						
							| 92 | 91 | com12 |  |-  ( w =/= (/) -> ( ph -> ( A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) ) | 
						
							| 93 | 92 | impd |  |-  ( w =/= (/) -> ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) ) | 
						
							| 94 | 19 93 | pm2.61ine |  |-  ( ( ph /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 95 | 94 | 3adant2 |  |-  ( ( ph /\ ( # ` w ) e. ( 0 ... ( # ` W ) ) /\ A. x ( ( # ` x ) e. ( 0 ..^ ( # ` w ) ) -> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) ) | 
						
							| 96 |  | eleq1 |  |-  ( w = x -> ( w e. Word T <-> x e. Word T ) ) | 
						
							| 97 |  | oveq2 |  |-  ( w = x -> ( G gsum w ) = ( G gsum x ) ) | 
						
							| 98 | 97 | eqeq1d |  |-  ( w = x -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum x ) = ( _I |` D ) ) ) | 
						
							| 99 | 96 98 | anbi12d |  |-  ( w = x -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) ) ) | 
						
							| 100 |  | fveq2 |  |-  ( w = x -> ( # ` w ) = ( # ` x ) ) | 
						
							| 101 | 100 | oveq2d |  |-  ( w = x -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` x ) ) ) | 
						
							| 102 | 101 | eqeq1d |  |-  ( w = x -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` x ) ) = 1 ) ) | 
						
							| 103 | 99 102 | imbi12d |  |-  ( w = x -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( x e. Word T /\ ( G gsum x ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` x ) ) = 1 ) ) ) | 
						
							| 104 |  | eleq1 |  |-  ( w = W -> ( w e. Word T <-> W e. Word T ) ) | 
						
							| 105 |  | oveq2 |  |-  ( w = W -> ( G gsum w ) = ( G gsum W ) ) | 
						
							| 106 | 105 | eqeq1d |  |-  ( w = W -> ( ( G gsum w ) = ( _I |` D ) <-> ( G gsum W ) = ( _I |` D ) ) ) | 
						
							| 107 | 104 106 | anbi12d |  |-  ( w = W -> ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) <-> ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) ) ) | 
						
							| 108 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 109 | 108 | oveq2d |  |-  ( w = W -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` W ) ) ) | 
						
							| 110 | 109 | eqeq1d |  |-  ( w = W -> ( ( -u 1 ^ ( # ` w ) ) = 1 <-> ( -u 1 ^ ( # ` W ) ) = 1 ) ) | 
						
							| 111 | 107 110 | imbi12d |  |-  ( w = W -> ( ( ( w e. Word T /\ ( G gsum w ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` w ) ) = 1 ) <-> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) ) | 
						
							| 112 | 4 10 95 103 111 100 108 | uzindi |  |-  ( ph -> ( ( W e. Word T /\ ( G gsum W ) = ( _I |` D ) ) -> ( -u 1 ^ ( # ` W ) ) = 1 ) ) | 
						
							| 113 | 4 5 112 | mp2and |  |-  ( ph -> ( -u 1 ^ ( # ` W ) ) = 1 ) |