| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssltmul2.1 |  |-  ( ph -> L < | 
						
							| 2 |  | ssltmul2.2 |  |-  ( ph -> M < | 
						
							| 3 |  | ssltmul2.3 |  |-  ( ph -> A = ( L |s R ) ) | 
						
							| 4 |  | ssltmul2.4 |  |-  ( ph -> B = ( M |s S ) ) | 
						
							| 5 |  | snex |  |-  { ( A x.s B ) } e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ph -> { ( A x.s B ) } e. _V ) | 
						
							| 7 |  | eqid |  |-  ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) | 
						
							| 8 | 7 | rnmpo |  |-  ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) = { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } | 
						
							| 9 |  | ssltex1 |  |-  ( L < L e. _V ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> L e. _V ) | 
						
							| 11 |  | ssltex2 |  |-  ( M < S e. _V ) | 
						
							| 12 | 2 11 | syl |  |-  ( ph -> S e. _V ) | 
						
							| 13 | 7 | mpoexg |  |-  ( ( L e. _V /\ S e. _V ) -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) | 
						
							| 14 | 10 12 13 | syl2anc |  |-  ( ph -> ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) | 
						
							| 15 |  | rnexg |  |-  ( ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ran ( t e. L , u e. S |-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) e. _V ) | 
						
							| 17 | 8 16 | eqeltrrid |  |-  ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } e. _V ) | 
						
							| 18 |  | eqid |  |-  ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) | 
						
							| 19 | 18 | rnmpo |  |-  ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) = { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } | 
						
							| 20 |  | ssltex2 |  |-  ( L < R e. _V ) | 
						
							| 21 | 1 20 | syl |  |-  ( ph -> R e. _V ) | 
						
							| 22 |  | ssltex1 |  |-  ( M < M e. _V ) | 
						
							| 23 | 2 22 | syl |  |-  ( ph -> M e. _V ) | 
						
							| 24 | 18 | mpoexg |  |-  ( ( R e. _V /\ M e. _V ) -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) | 
						
							| 25 | 21 23 24 | syl2anc |  |-  ( ph -> ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) | 
						
							| 26 |  | rnexg |  |-  ( ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> ran ( v e. R , w e. M |-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) e. _V ) | 
						
							| 28 | 19 27 | eqeltrrid |  |-  ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } e. _V ) | 
						
							| 29 | 17 28 | unexd |  |-  ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) e. _V ) | 
						
							| 30 | 1 | scutcld |  |-  ( ph -> ( L |s R ) e. No ) | 
						
							| 31 | 3 30 | eqeltrd |  |-  ( ph -> A e. No ) | 
						
							| 32 | 2 | scutcld |  |-  ( ph -> ( M |s S ) e. No ) | 
						
							| 33 | 4 32 | eqeltrd |  |-  ( ph -> B e. No ) | 
						
							| 34 | 31 33 | mulscld |  |-  ( ph -> ( A x.s B ) e. No ) | 
						
							| 35 | 34 | snssd |  |-  ( ph -> { ( A x.s B ) } C_ No ) | 
						
							| 36 |  | ssltss1 |  |-  ( L < L C_ No ) | 
						
							| 37 | 1 36 | syl |  |-  ( ph -> L C_ No ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> L C_ No ) | 
						
							| 39 |  | simprl |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> t e. L ) | 
						
							| 40 | 38 39 | sseldd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> t e. No ) | 
						
							| 41 | 33 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> B e. No ) | 
						
							| 42 | 40 41 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s B ) e. No ) | 
						
							| 43 | 31 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> A e. No ) | 
						
							| 44 |  | ssltss2 |  |-  ( M < S C_ No ) | 
						
							| 45 | 2 44 | syl |  |-  ( ph -> S C_ No ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> S C_ No ) | 
						
							| 47 |  | simprr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> u e. S ) | 
						
							| 48 | 46 47 | sseldd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> u e. No ) | 
						
							| 49 | 43 48 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s u ) e. No ) | 
						
							| 50 | 42 49 | addscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) +s ( A x.s u ) ) e. No ) | 
						
							| 51 | 40 48 | mulscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( t x.s u ) e. No ) | 
						
							| 52 | 50 51 | subscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) | 
						
							| 53 |  | eleq1 |  |-  ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( c e. No <-> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) e. No ) ) | 
						
							| 54 | 52 53 | syl5ibrcom |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) | 
						
							| 55 | 54 | rexlimdvva |  |-  ( ph -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> c e. No ) ) | 
						
							| 56 | 55 | abssdv |  |-  ( ph -> { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } C_ No ) | 
						
							| 57 |  | ssltss2 |  |-  ( L < R C_ No ) | 
						
							| 58 | 1 57 | syl |  |-  ( ph -> R C_ No ) | 
						
							| 59 | 58 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> R C_ No ) | 
						
							| 60 |  | simprl |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> v e. R ) | 
						
							| 61 | 59 60 | sseldd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> v e. No ) | 
						
							| 62 | 33 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> B e. No ) | 
						
							| 63 | 61 62 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s B ) e. No ) | 
						
							| 64 | 31 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> A e. No ) | 
						
							| 65 |  | ssltss1 |  |-  ( M < M C_ No ) | 
						
							| 66 | 2 65 | syl |  |-  ( ph -> M C_ No ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> M C_ No ) | 
						
							| 68 |  | simprr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> w e. M ) | 
						
							| 69 | 67 68 | sseldd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> w e. No ) | 
						
							| 70 | 64 69 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s w ) e. No ) | 
						
							| 71 | 63 70 | addscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) +s ( A x.s w ) ) e. No ) | 
						
							| 72 | 61 69 | mulscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( v x.s w ) e. No ) | 
						
							| 73 | 71 72 | subscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) | 
						
							| 74 |  | eleq1 |  |-  ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( d e. No <-> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) e. No ) ) | 
						
							| 75 | 73 74 | syl5ibrcom |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) | 
						
							| 76 | 75 | rexlimdvva |  |-  ( ph -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> d e. No ) ) | 
						
							| 77 | 76 | abssdv |  |-  ( ph -> { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } C_ No ) | 
						
							| 78 | 56 77 | unssd |  |-  ( ph -> ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) C_ No ) | 
						
							| 79 |  | elun |  |-  ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) | 
						
							| 80 |  | vex |  |-  y e. _V | 
						
							| 81 |  | eqeq1 |  |-  ( c = y -> ( c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) | 
						
							| 82 | 81 | 2rexbidv |  |-  ( c = y -> ( E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) ) | 
						
							| 83 | 80 82 | elab |  |-  ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) ) | 
						
							| 84 |  | eqeq1 |  |-  ( d = y -> ( d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) | 
						
							| 85 | 84 | 2rexbidv |  |-  ( d = y -> ( E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) | 
						
							| 86 | 80 85 | elab |  |-  ( y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) | 
						
							| 87 | 83 86 | orbi12i |  |-  ( ( y e. { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } \/ y e. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) | 
						
							| 88 | 79 87 | bitri |  |-  ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) <-> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) ) | 
						
							| 89 |  | scutcut |  |-  ( L < ( ( L |s R ) e. No /\ L < | 
						
							| 90 | 1 89 | syl |  |-  ( ph -> ( ( L |s R ) e. No /\ L < | 
						
							| 91 | 90 | simp2d |  |-  ( ph -> L < | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> L < | 
						
							| 93 |  | ovex |  |-  ( L |s R ) e. _V | 
						
							| 94 | 93 | snid |  |-  ( L |s R ) e. { ( L |s R ) } | 
						
							| 95 | 3 94 | eqeltrdi |  |-  ( ph -> A e. { ( L |s R ) } ) | 
						
							| 96 | 95 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> A e. { ( L |s R ) } ) | 
						
							| 97 | 92 39 96 | ssltsepcd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> t  | 
						
							| 98 |  | scutcut |  |-  ( M < ( ( M |s S ) e. No /\ M < | 
						
							| 99 | 2 98 | syl |  |-  ( ph -> ( ( M |s S ) e. No /\ M < | 
						
							| 100 | 99 | simp3d |  |-  ( ph -> { ( M |s S ) } < | 
						
							| 101 | 100 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> { ( M |s S ) } < | 
						
							| 102 |  | ovex |  |-  ( M |s S ) e. _V | 
						
							| 103 | 102 | snid |  |-  ( M |s S ) e. { ( M |s S ) } | 
						
							| 104 | 4 103 | eqeltrdi |  |-  ( ph -> B e. { ( M |s S ) } ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> B e. { ( M |s S ) } ) | 
						
							| 106 | 101 105 47 | ssltsepcd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> B  | 
						
							| 107 | 40 43 41 48 97 106 | sltmuld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s u ) -s ( t x.s B ) )  | 
						
							| 108 | 34 | adantr |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B ) e. No ) | 
						
							| 109 | 51 42 49 108 | sltsubsub2bd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) )  ( ( A x.s B ) -s ( A x.s u ) )  | 
						
							| 110 | 42 51 | subscld |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( t x.s B ) -s ( t x.s u ) ) e. No ) | 
						
							| 111 | 108 49 110 | sltsubaddd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( A x.s B ) -s ( A x.s u ) )  ( A x.s B )  | 
						
							| 112 | 109 111 | bitrd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s u ) -s ( t x.s B ) )  ( A x.s B )  | 
						
							| 113 | 107 112 | mpbid |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B )  | 
						
							| 114 | 42 49 51 | addsubsd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) = ( ( ( t x.s B ) -s ( t x.s u ) ) +s ( A x.s u ) ) ) | 
						
							| 115 | 113 114 | breqtrrd |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( A x.s B )  | 
						
							| 116 |  | breq2 |  |-  ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( ( A x.s B )  ( A x.s B )  | 
						
							| 117 | 115 116 | syl5ibrcom |  |-  ( ( ph /\ ( t e. L /\ u e. S ) ) -> ( y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B )  | 
						
							| 118 | 117 | rexlimdvva |  |-  ( ph -> ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) -> ( A x.s B )  | 
						
							| 119 | 90 | simp3d |  |-  ( ph -> { ( L |s R ) } < | 
						
							| 120 | 119 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> { ( L |s R ) } < | 
						
							| 121 | 95 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> A e. { ( L |s R ) } ) | 
						
							| 122 | 120 121 60 | ssltsepcd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> A  | 
						
							| 123 | 99 | simp2d |  |-  ( ph -> M < | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> M < | 
						
							| 125 | 104 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> B e. { ( M |s S ) } ) | 
						
							| 126 | 124 68 125 | ssltsepcd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> w  | 
						
							| 127 | 64 61 69 62 122 126 | sltmuld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( A x.s B ) -s ( A x.s w ) )  | 
						
							| 128 | 34 | adantr |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B ) e. No ) | 
						
							| 129 | 63 72 | subscld |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( v x.s B ) -s ( v x.s w ) ) e. No ) | 
						
							| 130 | 128 70 129 | sltsubaddd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( A x.s B ) -s ( A x.s w ) )  ( A x.s B )  | 
						
							| 131 | 127 130 | mpbid |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B )  | 
						
							| 132 | 63 70 72 | addsubsd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) = ( ( ( v x.s B ) -s ( v x.s w ) ) +s ( A x.s w ) ) ) | 
						
							| 133 | 131 132 | breqtrrd |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( A x.s B )  | 
						
							| 134 |  | breq2 |  |-  ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( ( A x.s B )  ( A x.s B )  | 
						
							| 135 | 133 134 | syl5ibrcom |  |-  ( ( ph /\ ( v e. R /\ w e. M ) ) -> ( y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B )  | 
						
							| 136 | 135 | rexlimdvva |  |-  ( ph -> ( E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) -> ( A x.s B )  | 
						
							| 137 | 118 136 | jaod |  |-  ( ph -> ( ( E. t e. L E. u e. S y = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) \/ E. v e. R E. w e. M y = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) ) -> ( A x.s B )  | 
						
							| 138 | 88 137 | biimtrid |  |-  ( ph -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )  | 
						
							| 139 |  | velsn |  |-  ( x e. { ( A x.s B ) } <-> x = ( A x.s B ) ) | 
						
							| 140 |  | breq1 |  |-  ( x = ( A x.s B ) -> ( x  ( A x.s B )  | 
						
							| 141 | 140 | imbi2d |  |-  ( x = ( A x.s B ) -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x  ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )  | 
						
							| 142 | 139 141 | sylbi |  |-  ( x e. { ( A x.s B ) } -> ( ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x  ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> ( A x.s B )  | 
						
							| 143 | 138 142 | syl5ibrcom |  |-  ( ph -> ( x e. { ( A x.s B ) } -> ( y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) -> x  | 
						
							| 144 | 143 | 3imp |  |-  ( ( ph /\ x e. { ( A x.s B ) } /\ y e. ( { c | E. t e. L E. u e. S c = ( ( ( t x.s B ) +s ( A x.s u ) ) -s ( t x.s u ) ) } u. { d | E. v e. R E. w e. M d = ( ( ( v x.s B ) +s ( A x.s w ) ) -s ( v x.s w ) ) } ) ) -> x  | 
						
							| 145 | 6 29 35 78 144 | ssltd |  |-  ( ph -> { ( A x.s B ) } < |