| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssltmul2.1 | ⊢ ( 𝜑  →  𝐿  <<s  𝑅 ) | 
						
							| 2 |  | ssltmul2.2 | ⊢ ( 𝜑  →  𝑀  <<s  𝑆 ) | 
						
							| 3 |  | ssltmul2.3 | ⊢ ( 𝜑  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 4 |  | ssltmul2.4 | ⊢ ( 𝜑  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 5 |  | snex | ⊢ { ( 𝐴  ·s  𝐵 ) }  ∈  V | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  { ( 𝐴  ·s  𝐵 ) }  ∈  V ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  =  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) | 
						
							| 8 | 7 | rnmpo | ⊢ ran  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  =  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) } | 
						
							| 9 |  | ssltex1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ∈  V ) | 
						
							| 10 | 1 9 | syl | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 11 |  | ssltex2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ∈  V ) | 
						
							| 12 | 2 11 | syl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 13 | 7 | mpoexg | ⊢ ( ( 𝐿  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  ∈  V ) | 
						
							| 14 | 10 12 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  ∈  V ) | 
						
							| 15 |  | rnexg | ⊢ ( ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  ∈  V  →  ran  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  ∈  V ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ran  ( 𝑡  ∈  𝐿 ,  𝑢  ∈  𝑆  ↦  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) )  ∈  V ) | 
						
							| 17 | 8 16 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∈  V ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  =  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) | 
						
							| 19 | 18 | rnmpo | ⊢ ran  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  =  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } | 
						
							| 20 |  | ssltex2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ∈  V ) | 
						
							| 21 | 1 20 | syl | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 22 |  | ssltex1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ∈  V ) | 
						
							| 23 | 2 22 | syl | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 24 | 18 | mpoexg | ⊢ ( ( 𝑅  ∈  V  ∧  𝑀  ∈  V )  →  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  ∈  V ) | 
						
							| 25 | 21 23 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  ∈  V ) | 
						
							| 26 |  | rnexg | ⊢ ( ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  ∈  V  →  ran  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  ∈  V ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  ran  ( 𝑣  ∈  𝑅 ,  𝑤  ∈  𝑀  ↦  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  ∈  V ) | 
						
							| 28 | 19 27 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) }  ∈  V ) | 
						
							| 29 | 17 28 | unexd | ⊢ ( 𝜑  →  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  ∈  V ) | 
						
							| 30 | 1 | scutcld | ⊢ ( 𝜑  →  ( 𝐿  |s  𝑅 )  ∈   No  ) | 
						
							| 31 | 3 30 | eqeltrd | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 32 | 2 | scutcld | ⊢ ( 𝜑  →  ( 𝑀  |s  𝑆 )  ∈   No  ) | 
						
							| 33 | 4 32 | eqeltrd | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 34 | 31 33 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 35 | 34 | snssd | ⊢ ( 𝜑  →  { ( 𝐴  ·s  𝐵 ) }  ⊆   No  ) | 
						
							| 36 |  | ssltss1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ⊆   No  ) | 
						
							| 37 | 1 36 | syl | ⊢ ( 𝜑  →  𝐿  ⊆   No  ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐿  ⊆   No  ) | 
						
							| 39 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑡  ∈  𝐿 ) | 
						
							| 40 | 38 39 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑡  ∈   No  ) | 
						
							| 41 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐵  ∈   No  ) | 
						
							| 42 | 40 41 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑡  ·s  𝐵 )  ∈   No  ) | 
						
							| 43 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐴  ∈   No  ) | 
						
							| 44 |  | ssltss2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ⊆   No  ) | 
						
							| 45 | 2 44 | syl | ⊢ ( 𝜑  →  𝑆  ⊆   No  ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑆  ⊆   No  ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 48 | 46 47 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑢  ∈   No  ) | 
						
							| 49 | 43 48 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝑢 )  ∈   No  ) | 
						
							| 50 | 42 49 | addscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  ∈   No  ) | 
						
							| 51 | 40 48 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑡  ·s  𝑢 )  ∈   No  ) | 
						
							| 52 | 50 51 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ∈   No  ) | 
						
							| 53 |  | eleq1 | ⊢ ( 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  ( 𝑐  ∈   No   ↔  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ∈   No  ) ) | 
						
							| 54 | 52 53 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  𝑐  ∈   No  ) ) | 
						
							| 55 | 54 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  𝑐  ∈   No  ) ) | 
						
							| 56 | 55 | abssdv | ⊢ ( 𝜑  →  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ⊆   No  ) | 
						
							| 57 |  | ssltss2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ⊆   No  ) | 
						
							| 58 | 1 57 | syl | ⊢ ( 𝜑  →  𝑅  ⊆   No  ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑅  ⊆   No  ) | 
						
							| 60 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑣  ∈  𝑅 ) | 
						
							| 61 | 59 60 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑣  ∈   No  ) | 
						
							| 62 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝐵  ∈   No  ) | 
						
							| 63 | 61 62 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝑣  ·s  𝐵 )  ∈   No  ) | 
						
							| 64 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝐴  ∈   No  ) | 
						
							| 65 |  | ssltss1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ⊆   No  ) | 
						
							| 66 | 2 65 | syl | ⊢ ( 𝜑  →  𝑀  ⊆   No  ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑀  ⊆   No  ) | 
						
							| 68 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑤  ∈  𝑀 ) | 
						
							| 69 | 67 68 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑤  ∈   No  ) | 
						
							| 70 | 64 69 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝑤 )  ∈   No  ) | 
						
							| 71 | 63 70 | addscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  ∈   No  ) | 
						
							| 72 | 61 69 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝑣  ·s  𝑤 )  ∈   No  ) | 
						
							| 73 | 71 72 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  ∈   No  ) | 
						
							| 74 |  | eleq1 | ⊢ ( 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  ( 𝑑  ∈   No   ↔  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  ∈   No  ) ) | 
						
							| 75 | 73 74 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  𝑑  ∈   No  ) ) | 
						
							| 76 | 75 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  𝑑  ∈   No  ) ) | 
						
							| 77 | 76 | abssdv | ⊢ ( 𝜑  →  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) }  ⊆   No  ) | 
						
							| 78 | 56 77 | unssd | ⊢ ( 𝜑  →  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  ⊆   No  ) | 
						
							| 79 |  | elun | ⊢ ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  ↔  ( 𝑦  ∈  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∨  𝑦  ∈  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } ) ) | 
						
							| 80 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 81 |  | eqeq1 | ⊢ ( 𝑐  =  𝑦  →  ( 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ↔  𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) ) | 
						
							| 82 | 81 | 2rexbidv | ⊢ ( 𝑐  =  𝑦  →  ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ↔  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) ) | 
						
							| 83 | 80 82 | elab | ⊢ ( 𝑦  ∈  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ↔  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) | 
						
							| 84 |  | eqeq1 | ⊢ ( 𝑑  =  𝑦  →  ( 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  ↔  𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) ) | 
						
							| 85 | 84 | 2rexbidv | ⊢ ( 𝑑  =  𝑦  →  ( ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  ↔  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) ) | 
						
							| 86 | 80 85 | elab | ⊢ ( 𝑦  ∈  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) }  ↔  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) | 
						
							| 87 | 83 86 | orbi12i | ⊢ ( ( 𝑦  ∈  { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∨  𝑦  ∈  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  ↔  ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ∨  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) ) | 
						
							| 88 | 79 87 | bitri | ⊢ ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  ↔  ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ∨  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) ) | 
						
							| 89 |  | scutcut | ⊢ ( 𝐿  <<s  𝑅  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 90 | 1 89 | syl | ⊢ ( 𝜑  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 91 | 90 | simp2d | ⊢ ( 𝜑  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 93 |  | ovex | ⊢ ( 𝐿  |s  𝑅 )  ∈  V | 
						
							| 94 | 93 | snid | ⊢ ( 𝐿  |s  𝑅 )  ∈  { ( 𝐿  |s  𝑅 ) } | 
						
							| 95 | 3 94 | eqeltrdi | ⊢ ( 𝜑  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 97 | 92 39 96 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝑡  <s  𝐴 ) | 
						
							| 98 |  | scutcut | ⊢ ( 𝑀  <<s  𝑆  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 99 | 2 98 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 100 | 99 | simp3d | ⊢ ( 𝜑  →  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) | 
						
							| 102 |  | ovex | ⊢ ( 𝑀  |s  𝑆 )  ∈  V | 
						
							| 103 | 102 | snid | ⊢ ( 𝑀  |s  𝑆 )  ∈  { ( 𝑀  |s  𝑆 ) } | 
						
							| 104 | 4 103 | eqeltrdi | ⊢ ( 𝜑  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 106 | 101 105 47 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  𝐵  <s  𝑢 ) | 
						
							| 107 | 40 43 41 48 97 106 | sltmuld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑡  ·s  𝑢 )  -s  ( 𝑡  ·s  𝐵 ) )  <s  ( ( 𝐴  ·s  𝑢 )  -s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 108 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 109 | 51 42 49 108 | sltsubsub2bd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ( 𝑡  ·s  𝑢 )  -s  ( 𝑡  ·s  𝐵 ) )  <s  ( ( 𝐴  ·s  𝑢 )  -s  ( 𝐴  ·s  𝐵 ) )  ↔  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑢 ) )  <s  ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) ) ) ) | 
						
							| 110 | 42 51 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  ∈   No  ) | 
						
							| 111 | 108 49 110 | sltsubaddd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑢 ) )  <s  ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  ↔  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  +s  ( 𝐴  ·s  𝑢 ) ) ) ) | 
						
							| 112 | 109 111 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ( 𝑡  ·s  𝑢 )  -s  ( 𝑡  ·s  𝐵 ) )  <s  ( ( 𝐴  ·s  𝑢 )  -s  ( 𝐴  ·s  𝐵 ) )  ↔  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  +s  ( 𝐴  ·s  𝑢 ) ) ) ) | 
						
							| 113 | 107 112 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  +s  ( 𝐴  ·s  𝑢 ) ) ) | 
						
							| 114 | 42 49 51 | addsubsd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  =  ( ( ( 𝑡  ·s  𝐵 )  -s  ( 𝑡  ·s  𝑢 ) )  +s  ( 𝐴  ·s  𝑢 ) ) ) | 
						
							| 115 | 113 114 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) | 
						
							| 116 |  | breq2 | ⊢ ( 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  ( ( 𝐴  ·s  𝐵 )  <s  𝑦  ↔  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) ) ) | 
						
							| 117 | 115 116 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝐿  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 118 | 117 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 119 | 90 | simp3d | ⊢ ( 𝜑  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 121 | 95 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 122 | 120 121 60 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝐴  <s  𝑣 ) | 
						
							| 123 | 99 | simp2d | ⊢ ( 𝜑  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 125 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 126 | 124 68 125 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  𝑤  <s  𝐵 ) | 
						
							| 127 | 64 61 69 62 122 126 | sltmuld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑤 ) )  <s  ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) ) ) | 
						
							| 128 | 34 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 129 | 63 72 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) )  ∈   No  ) | 
						
							| 130 | 128 70 129 | sltsubaddd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑤 ) )  <s  ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) )  ↔  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) )  +s  ( 𝐴  ·s  𝑤 ) ) ) ) | 
						
							| 131 | 127 130 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) )  +s  ( 𝐴  ·s  𝑤 ) ) ) | 
						
							| 132 | 63 70 72 | addsubsd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  =  ( ( ( 𝑣  ·s  𝐵 )  -s  ( 𝑣  ·s  𝑤 ) )  +s  ( 𝐴  ·s  𝑤 ) ) ) | 
						
							| 133 | 131 132 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) | 
						
							| 134 |  | breq2 | ⊢ ( 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  ( ( 𝐴  ·s  𝐵 )  <s  𝑦  ↔  ( 𝐴  ·s  𝐵 )  <s  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) ) ) | 
						
							| 135 | 133 134 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑣  ∈  𝑅  ∧  𝑤  ∈  𝑀 ) )  →  ( 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 136 | 135 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 137 | 118 136 | jaod | ⊢ ( 𝜑  →  ( ( ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑦  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) )  ∨  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑦  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 138 | 88 137 | biimtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 139 |  | velsn | ⊢ ( 𝑥  ∈  { ( 𝐴  ·s  𝐵 ) }  ↔  𝑥  =  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 140 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐴  ·s  𝐵 )  →  ( 𝑥  <s  𝑦  ↔  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) | 
						
							| 141 | 140 | imbi2d | ⊢ ( 𝑥  =  ( 𝐴  ·s  𝐵 )  →  ( ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  𝑥  <s  𝑦 )  ↔  ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) ) | 
						
							| 142 | 139 141 | sylbi | ⊢ ( 𝑥  ∈  { ( 𝐴  ·s  𝐵 ) }  →  ( ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  𝑥  <s  𝑦 )  ↔  ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  ( 𝐴  ·s  𝐵 )  <s  𝑦 ) ) ) | 
						
							| 143 | 138 142 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑥  ∈  { ( 𝐴  ·s  𝐵 ) }  →  ( 𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } )  →  𝑥  <s  𝑦 ) ) ) | 
						
							| 144 | 143 | 3imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  { ( 𝐴  ·s  𝐵 ) }  ∧  𝑦  ∈  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } ) )  →  𝑥  <s  𝑦 ) | 
						
							| 145 | 6 29 35 78 144 | ssltd | ⊢ ( 𝜑  →  { ( 𝐴  ·s  𝐵 ) }  <<s  ( { 𝑐  ∣  ∃ 𝑡  ∈  𝐿 ∃ 𝑢  ∈  𝑆 𝑐  =  ( ( ( 𝑡  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑢 ) )  -s  ( 𝑡  ·s  𝑢 ) ) }  ∪  { 𝑑  ∣  ∃ 𝑣  ∈  𝑅 ∃ 𝑤  ∈  𝑀 𝑑  =  ( ( ( 𝑣  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑤 ) )  -s  ( 𝑣  ·s  𝑤 ) ) } ) ) |