| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsuniflem.1 |
⊢ ( 𝜑 → 𝐿 <<s 𝑅 ) |
| 2 |
|
mulsuniflem.2 |
⊢ ( 𝜑 → 𝑀 <<s 𝑆 ) |
| 3 |
|
mulsuniflem.3 |
⊢ ( 𝜑 → 𝐴 = ( 𝐿 |s 𝑅 ) ) |
| 4 |
|
mulsuniflem.4 |
⊢ ( 𝜑 → 𝐵 = ( 𝑀 |s 𝑆 ) ) |
| 5 |
1
|
scutcld |
⊢ ( 𝜑 → ( 𝐿 |s 𝑅 ) ∈ No ) |
| 6 |
3 5
|
eqeltrd |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 7 |
2
|
scutcld |
⊢ ( 𝜑 → ( 𝑀 |s 𝑆 ) ∈ No ) |
| 8 |
4 7
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 9 |
|
mulsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) ) |
| 10 |
6 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) ) |
| 11 |
6 8
|
mulscut2 |
⊢ ( 𝜑 → ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) <<s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) |
| 12 |
1 3
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) |
| 13 |
2 4
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ) → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) |
| 15 |
|
reeanv |
⊢ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ↔ ( ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ∧ ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) ) |
| 16 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑓 ∈ ( L ‘ 𝐴 ) ) |
| 18 |
16 17
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑓 ∈ No ) |
| 19 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝑓 ∈ No ) |
| 20 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝐵 ∈ No ) |
| 21 |
19 20
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝑓 ·s 𝐵 ) ∈ No ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝐴 ∈ No ) |
| 23 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
| 24 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 ∈ ( L ‘ 𝐵 ) ) |
| 25 |
23 24
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 ∈ No ) |
| 26 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝑔 ∈ No ) |
| 27 |
22 26
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝐴 ·s 𝑔 ) ∈ No ) |
| 28 |
21 27
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) ∈ No ) |
| 29 |
19 26
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝑓 ·s 𝑔 ) ∈ No ) |
| 30 |
28 29
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No ) |
| 31 |
30
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No ) |
| 32 |
|
ssltss1 |
⊢ ( 𝐿 <<s 𝑅 → 𝐿 ⊆ No ) |
| 33 |
1 32
|
syl |
⊢ ( 𝜑 → 𝐿 ⊆ No ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 ⊆ No ) |
| 35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ 𝐿 ) |
| 36 |
34 35
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ∈ No ) |
| 37 |
36
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝑝 ∈ No ) |
| 38 |
37 20
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝑝 ·s 𝐵 ) ∈ No ) |
| 39 |
38 27
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) ∈ No ) |
| 40 |
37 26
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝑝 ·s 𝑔 ) ∈ No ) |
| 41 |
39 40
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No ) |
| 42 |
41
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No ) |
| 43 |
|
ssltss1 |
⊢ ( 𝑀 <<s 𝑆 → 𝑀 ⊆ No ) |
| 44 |
2 43
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ No ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
| 46 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ 𝑀 ) |
| 47 |
45 46
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑞 ∈ No ) |
| 48 |
47
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝑞 ∈ No ) |
| 49 |
22 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝐴 ·s 𝑞 ) ∈ No ) |
| 50 |
38 49
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) ∈ No ) |
| 51 |
37 48
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( 𝑝 ·s 𝑞 ) ∈ No ) |
| 52 |
50 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 53 |
52
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 54 |
18
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑓 ∈ No ) |
| 55 |
37
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑝 ∈ No ) |
| 56 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 ∈ No ) |
| 57 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝐵 ∈ No ) |
| 58 |
|
simprrl |
⊢ ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) → 𝑓 ≤s 𝑝 ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑓 ≤s 𝑝 ) |
| 60 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 61 |
|
ssltleft |
⊢ ( 𝐵 ∈ No → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 62 |
8 61
|
syl |
⊢ ( 𝜑 → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 64 |
|
snidg |
⊢ ( 𝐵 ∈ No → 𝐵 ∈ { 𝐵 } ) |
| 65 |
8 64
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 } ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } ) |
| 67 |
63 24 66
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 <s 𝐵 ) |
| 68 |
25 60 67
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → 𝑔 ≤s 𝐵 ) |
| 69 |
68
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 ≤s 𝐵 ) |
| 70 |
54 55 56 57 59 69
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ) |
| 71 |
21 29
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ∈ No ) |
| 72 |
38 40
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No ) |
| 73 |
71 72 27
|
sleadd1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ↔ ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) ) |
| 74 |
73
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) ↔ ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) ) |
| 75 |
70 74
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) |
| 76 |
21 27 29
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) = ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) |
| 77 |
76
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) = ( ( ( 𝑓 ·s 𝐵 ) -s ( 𝑓 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) |
| 78 |
38 27 40
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) |
| 79 |
78
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( ( 𝑝 ·s 𝐵 ) -s ( 𝑝 ·s 𝑔 ) ) +s ( 𝐴 ·s 𝑔 ) ) ) |
| 80 |
75 77 79
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ) |
| 81 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝐴 ∈ No ) |
| 82 |
48
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑞 ∈ No ) |
| 83 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 84 |
|
scutcut |
⊢ ( 𝐿 <<s 𝑅 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 85 |
1 84
|
syl |
⊢ ( 𝜑 → ( ( 𝐿 |s 𝑅 ) ∈ No ∧ 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ∧ { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) ) |
| 86 |
85
|
simp2d |
⊢ ( 𝜑 → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐿 <<s { ( 𝐿 |s 𝑅 ) } ) |
| 88 |
|
ovex |
⊢ ( 𝐿 |s 𝑅 ) ∈ V |
| 89 |
88
|
snid |
⊢ ( 𝐿 |s 𝑅 ) ∈ { ( 𝐿 |s 𝑅 ) } |
| 90 |
3 89
|
eqeltrdi |
⊢ ( 𝜑 → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 92 |
87 35 91
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 <s 𝐴 ) |
| 93 |
36 83 92
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → 𝑝 ≤s 𝐴 ) |
| 94 |
93
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → 𝑝 ≤s 𝐴 ) |
| 95 |
94
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑝 ≤s 𝐴 ) |
| 96 |
|
simprrr |
⊢ ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) → 𝑔 ≤s 𝑞 ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → 𝑔 ≤s 𝑞 ) |
| 98 |
55 81 56 82 95 97
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ) |
| 99 |
51 49 40 27
|
slesubsub3bd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 100 |
27 40
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ∈ No ) |
| 101 |
49 51
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ∈ No ) |
| 102 |
100 101 38
|
sleadd2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 103 |
99 102
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 104 |
103
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝑞 ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( 𝐴 ·s 𝑞 ) -s ( 𝐴 ·s 𝑔 ) ) ↔ ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 105 |
98 104
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ≤s ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 106 |
38 27 40
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ) |
| 107 |
106
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑔 ) -s ( 𝑝 ·s 𝑔 ) ) ) ) |
| 108 |
38 49 51
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 109 |
108
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) = ( ( 𝑝 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑞 ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 110 |
105 107 109
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑝 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 111 |
31 42 53 80 110
|
sletrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 112 |
111
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ∧ ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 113 |
112
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑝 ∈ 𝐿 ∧ 𝑞 ∈ 𝑀 ) ) → ( ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) → ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 114 |
113
|
reximdvva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 115 |
114
|
expcom |
⊢ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 116 |
115
|
com23 |
⊢ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) → ( 𝜑 → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) ) |
| 117 |
116
|
imp |
⊢ ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑓 ≤s 𝑝 ∧ 𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 118 |
15 117
|
sylan2br |
⊢ ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) ∧ ( ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ∧ ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 119 |
118
|
an4s |
⊢ ( ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) ) → ( 𝜑 → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 120 |
119
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) ) ) → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 121 |
120
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ) ∧ ( 𝑔 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 ) ) → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 122 |
121
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ) ∧ 𝑔 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 → ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 123 |
122
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ) → ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑞 ∈ 𝑀 𝑔 ≤s 𝑞 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 124 |
14 123
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 ) ) → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 125 |
124
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 → ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 126 |
125
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑝 ∈ 𝐿 𝑓 ≤s 𝑝 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 127 |
12 126
|
mpd |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 128 |
|
eqeq1 |
⊢ ( 𝑎 = 𝑧 → ( 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 129 |
128
|
2rexbidv |
⊢ ( 𝑎 = 𝑧 → ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 130 |
129
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 131 |
|
r19.41vv |
⊢ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 132 |
131
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 133 |
|
rexcom4 |
⊢ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑧 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 134 |
|
rexcom4 |
⊢ ( ∃ 𝑞 ∈ 𝑀 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 135 |
|
ovex |
⊢ ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∈ V |
| 136 |
|
breq2 |
⊢ ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ( ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) ) |
| 137 |
135 136
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 138 |
137
|
rexbii |
⊢ ( ∃ 𝑞 ∈ 𝑀 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 139 |
134 138
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 140 |
139
|
rexbii |
⊢ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑧 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 141 |
133 140
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ∧ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 142 |
130 132 141
|
3bitr2i |
⊢ ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ↔ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) ) |
| 143 |
|
ssun1 |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |
| 144 |
|
ssrexv |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 145 |
143 144
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 146 |
142 145
|
sylbir |
⊢ ( ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 147 |
146
|
2ralimi |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 148 |
127 147
|
syl |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 149 |
1 3
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) |
| 150 |
2 4
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) |
| 151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ) → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) |
| 152 |
|
reeanv |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ↔ ( ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) ) |
| 153 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
| 154 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑖 ∈ ( R ‘ 𝐴 ) ) |
| 155 |
153 154
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑖 ∈ No ) |
| 156 |
155
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑖 ∈ No ) |
| 157 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝐵 ∈ No ) |
| 158 |
156 157
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝑖 ·s 𝐵 ) ∈ No ) |
| 159 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝐴 ∈ No ) |
| 160 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
| 161 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑗 ∈ ( R ‘ 𝐵 ) ) |
| 162 |
160 161
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝑗 ∈ No ) |
| 163 |
162
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑗 ∈ No ) |
| 164 |
159 163
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝐴 ·s 𝑗 ) ∈ No ) |
| 165 |
158 164
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) ∈ No ) |
| 166 |
156 163
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝑖 ·s 𝑗 ) ∈ No ) |
| 167 |
165 166
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No ) |
| 168 |
167
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No ) |
| 169 |
|
ssltss2 |
⊢ ( 𝐿 <<s 𝑅 → 𝑅 ⊆ No ) |
| 170 |
1 169
|
syl |
⊢ ( 𝜑 → 𝑅 ⊆ No ) |
| 171 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑅 ⊆ No ) |
| 172 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ 𝑅 ) |
| 173 |
171 172
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑟 ∈ No ) |
| 174 |
173
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑟 ∈ No ) |
| 175 |
174 157
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝑟 ·s 𝐵 ) ∈ No ) |
| 176 |
175 164
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) ∈ No ) |
| 177 |
174 163
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝑟 ·s 𝑗 ) ∈ No ) |
| 178 |
176 177
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No ) |
| 179 |
178
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No ) |
| 180 |
|
ssltss2 |
⊢ ( 𝑀 <<s 𝑆 → 𝑆 ⊆ No ) |
| 181 |
2 180
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ No ) |
| 182 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
| 183 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ 𝑆 ) |
| 184 |
182 183
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝑠 ∈ No ) |
| 185 |
184
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝑠 ∈ No ) |
| 186 |
159 185
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝐴 ·s 𝑠 ) ∈ No ) |
| 187 |
175 186
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) ∈ No ) |
| 188 |
173 184
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
| 189 |
188
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( 𝑟 ·s 𝑠 ) ∈ No ) |
| 190 |
187 189
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 191 |
190
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 192 |
174
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑟 ∈ No ) |
| 193 |
155
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑖 ∈ No ) |
| 194 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝐵 ∈ No ) |
| 195 |
162
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑗 ∈ No ) |
| 196 |
|
simprrl |
⊢ ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) → 𝑟 ≤s 𝑖 ) |
| 197 |
196
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑟 ≤s 𝑖 ) |
| 198 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 199 |
|
ssltright |
⊢ ( 𝐵 ∈ No → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
| 200 |
8 199
|
syl |
⊢ ( 𝜑 → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
| 201 |
200
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → { 𝐵 } <<s ( R ‘ 𝐵 ) ) |
| 202 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } ) |
| 203 |
201 202 161
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 <s 𝑗 ) |
| 204 |
198 162 203
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ≤s 𝑗 ) |
| 205 |
204
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝐵 ≤s 𝑗 ) |
| 206 |
192 193 194 195 197 205
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ) |
| 207 |
177 175 166 158
|
slesubsub2bd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ) ) |
| 208 |
158 166
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ∈ No ) |
| 209 |
175 177
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No ) |
| 210 |
208 209 164
|
sleadd1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) ) |
| 211 |
207 210
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) ) |
| 212 |
211
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝐵 ) ) ≤s ( ( 𝑖 ·s 𝑗 ) -s ( 𝑖 ·s 𝐵 ) ) ↔ ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) ) |
| 213 |
206 212
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) |
| 214 |
158 164 166
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) = ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) |
| 215 |
214
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) = ( ( ( 𝑖 ·s 𝐵 ) -s ( 𝑖 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) |
| 216 |
175 164 177
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) |
| 217 |
216
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( ( 𝑟 ·s 𝐵 ) -s ( 𝑟 ·s 𝑗 ) ) +s ( 𝐴 ·s 𝑗 ) ) ) |
| 218 |
213 215 217
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ) |
| 219 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝐴 ∈ No ) |
| 220 |
185
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑠 ∈ No ) |
| 221 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ No ) |
| 222 |
85
|
simp3d |
⊢ ( 𝜑 → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 223 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → { ( 𝐿 |s 𝑅 ) } <<s 𝑅 ) |
| 224 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ∈ { ( 𝐿 |s 𝑅 ) } ) |
| 225 |
223 224 172
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 <s 𝑟 ) |
| 226 |
221 173 225
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → 𝐴 ≤s 𝑟 ) |
| 227 |
226
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → 𝐴 ≤s 𝑟 ) |
| 228 |
227
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝐴 ≤s 𝑟 ) |
| 229 |
|
simprrr |
⊢ ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) → 𝑠 ≤s 𝑗 ) |
| 230 |
229
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → 𝑠 ≤s 𝑗 ) |
| 231 |
219 192 220 195 228 230
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 232 |
164 177 186 189
|
slesubsubbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 233 |
164 177
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ∈ No ) |
| 234 |
186 189
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ∈ No ) |
| 235 |
233 234 175
|
sleadd2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) ) |
| 236 |
232 235
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) ) |
| 237 |
236
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝐴 ·s 𝑗 ) -s ( 𝐴 ·s 𝑠 ) ) ≤s ( ( 𝑟 ·s 𝑗 ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) ) |
| 238 |
231 237
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ≤s ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 239 |
175 164 177
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ) |
| 240 |
239
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑗 ) -s ( 𝑟 ·s 𝑗 ) ) ) ) |
| 241 |
175 186 189
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 242 |
241
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) = ( ( 𝑟 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑠 ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 243 |
238 240 242
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑟 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 244 |
168 179 191 218 243
|
sletrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 245 |
244
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ∧ ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 246 |
245
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) → ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 247 |
246
|
reximdvva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 248 |
247
|
expcom |
⊢ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) ) |
| 249 |
248
|
com23 |
⊢ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) → ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) ) |
| 250 |
249
|
imp |
⊢ ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑟 ≤s 𝑖 ∧ 𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 251 |
152 250
|
sylan2br |
⊢ ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) ∧ ( ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 252 |
251
|
an4s |
⊢ ( ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) ) → ( 𝜑 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 253 |
252
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 254 |
253
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ) ∧ ( 𝑗 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 255 |
254
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ) ∧ 𝑗 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 256 |
255
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ) → ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑠 ∈ 𝑆 𝑠 ≤s 𝑗 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 257 |
151 256
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 ) ) → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 258 |
257
|
expr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 → ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 259 |
258
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑟 ∈ 𝑅 𝑟 ≤s 𝑖 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 260 |
149 259
|
mpd |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 261 |
|
eqeq1 |
⊢ ( 𝑏 = 𝑧 → ( 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 262 |
261
|
2rexbidv |
⊢ ( 𝑏 = 𝑧 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 263 |
262
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 264 |
|
r19.41vv |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 265 |
264
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 266 |
|
rexcom4 |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑧 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 267 |
|
rexcom4 |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 268 |
|
ovex |
⊢ ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∈ V |
| 269 |
|
breq2 |
⊢ ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ( ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) ) |
| 270 |
268 269
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 271 |
270
|
rexbii |
⊢ ( ∃ 𝑠 ∈ 𝑆 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 272 |
267 271
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 273 |
272
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑧 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 274 |
266 273
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ∧ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 275 |
263 265 274
|
3bitr2i |
⊢ ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) ) |
| 276 |
|
ssun2 |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |
| 277 |
|
ssrexv |
⊢ ( { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ⊆ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 278 |
276 277
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 279 |
275 278
|
sylbir |
⊢ ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 280 |
279
|
2ralimi |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 281 |
260 280
|
syl |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 282 |
|
ralunb |
⊢ ( ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ∧ ∀ 𝑥𝑂 ∈ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 283 |
|
eqeq1 |
⊢ ( 𝑒 = 𝑥𝑂 → ( 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ) ) |
| 284 |
283
|
2rexbidv |
⊢ ( 𝑒 = 𝑥𝑂 → ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ↔ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ) ) |
| 285 |
284
|
ralab |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑥𝑂 ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 286 |
|
r19.23v |
⊢ ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 287 |
286
|
ralbii |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 288 |
|
r19.23v |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 289 |
287 288
|
bitri |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 290 |
289
|
albii |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 291 |
|
ralcom4 |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 292 |
|
ralcom4 |
⊢ ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 293 |
|
ovex |
⊢ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ∈ V |
| 294 |
|
breq1 |
⊢ ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ( 𝑥𝑂 ≤s 𝑧 ↔ ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 295 |
294
|
rexbidv |
⊢ ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ( ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) ) |
| 296 |
293 295
|
ceqsalv |
⊢ ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 297 |
296
|
ralbii |
⊢ ( ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 298 |
292 297
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 299 |
298
|
ralbii |
⊢ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 300 |
291 299
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 301 |
285 290 300
|
3bitr2i |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ) |
| 302 |
|
eqeq1 |
⊢ ( ℎ = 𝑥𝑂 → ( ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ) ) |
| 303 |
302
|
2rexbidv |
⊢ ( ℎ = 𝑥𝑂 → ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ↔ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ) ) |
| 304 |
303
|
ralab |
⊢ ( ∀ 𝑥𝑂 ∈ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑥𝑂 ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 305 |
|
r19.23v |
⊢ ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 306 |
305
|
ralbii |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 307 |
|
r19.23v |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 308 |
306 307
|
bitri |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 309 |
308
|
albii |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 310 |
|
ralcom4 |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 311 |
|
ralcom4 |
⊢ ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑥𝑂 ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ) |
| 312 |
|
ovex |
⊢ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ∈ V |
| 313 |
|
breq1 |
⊢ ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ( 𝑥𝑂 ≤s 𝑧 ↔ ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 314 |
313
|
rexbidv |
⊢ ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ( ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 315 |
312 314
|
ceqsalv |
⊢ ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 316 |
315
|
ralbii |
⊢ ( ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 317 |
311 316
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 318 |
317
|
ralbii |
⊢ ( ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 319 |
310 318
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) → ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 320 |
304 309 319
|
3bitr2i |
⊢ ( ∀ 𝑥𝑂 ∈ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) |
| 321 |
301 320
|
anbi12i |
⊢ ( ( ∀ 𝑥𝑂 ∈ { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ∧ ∀ 𝑥𝑂 ∈ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) ↔ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ∧ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 322 |
282 321
|
bitri |
⊢ ( ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ↔ ( ∀ 𝑓 ∈ ( L ‘ 𝐴 ) ∀ 𝑔 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) ≤s 𝑧 ∧ ∀ 𝑖 ∈ ( R ‘ 𝐴 ) ∀ 𝑗 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) ≤s 𝑧 ) ) |
| 323 |
148 281 322
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) ∃ 𝑧 ∈ ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) 𝑥𝑂 ≤s 𝑧 ) |
| 324 |
1 3
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) |
| 325 |
2 4
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) |
| 326 |
325
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ) → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) |
| 327 |
|
reeanv |
⊢ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ↔ ( ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ∧ ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) ) |
| 328 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐿 ⊆ No ) |
| 329 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ 𝐿 ) |
| 330 |
328 329
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑡 ∈ No ) |
| 331 |
330
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝑡 ∈ No ) |
| 332 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝐵 ∈ No ) |
| 333 |
331 332
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝑡 ·s 𝐵 ) ∈ No ) |
| 334 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝐴 ∈ No ) |
| 335 |
181
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑆 ⊆ No ) |
| 336 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
| 337 |
335 336
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ No ) |
| 338 |
337
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝑢 ∈ No ) |
| 339 |
334 338
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝐴 ·s 𝑢 ) ∈ No ) |
| 340 |
333 339
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
| 341 |
331 338
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝑡 ·s 𝑢 ) ∈ No ) |
| 342 |
340 341
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 343 |
342
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 344 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 ∈ ( L ‘ 𝐴 ) ) |
| 345 |
16 344
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 ∈ No ) |
| 346 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 347 |
345 346
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑙 ·s 𝐵 ) ∈ No ) |
| 348 |
347
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝑙 ·s 𝐵 ) ∈ No ) |
| 349 |
348 339
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) ∈ No ) |
| 350 |
345
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝑙 ∈ No ) |
| 351 |
350 338
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝑙 ·s 𝑢 ) ∈ No ) |
| 352 |
349 351
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No ) |
| 353 |
352
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No ) |
| 354 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 355 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑚 ∈ ( R ‘ 𝐵 ) ) |
| 356 |
160 355
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑚 ∈ No ) |
| 357 |
354 356
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑚 ) ∈ No ) |
| 358 |
357
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝐴 ·s 𝑚 ) ∈ No ) |
| 359 |
348 358
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) ∈ No ) |
| 360 |
345 356
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( 𝑙 ·s 𝑚 ) ∈ No ) |
| 361 |
360
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( 𝑙 ·s 𝑚 ) ∈ No ) |
| 362 |
359 361
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No ) |
| 363 |
362
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No ) |
| 364 |
345
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 ∈ No ) |
| 365 |
331
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑡 ∈ No ) |
| 366 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝐵 ∈ No ) |
| 367 |
338
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑢 ∈ No ) |
| 368 |
|
simprrl |
⊢ ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) → 𝑙 ≤s 𝑡 ) |
| 369 |
368
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 ≤s 𝑡 ) |
| 370 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ No ) |
| 371 |
|
scutcut |
⊢ ( 𝑀 <<s 𝑆 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 372 |
2 371
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 |s 𝑆 ) ∈ No ∧ 𝑀 <<s { ( 𝑀 |s 𝑆 ) } ∧ { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) ) |
| 373 |
372
|
simp3d |
⊢ ( 𝜑 → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 374 |
373
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → { ( 𝑀 |s 𝑆 ) } <<s 𝑆 ) |
| 375 |
|
ovex |
⊢ ( 𝑀 |s 𝑆 ) ∈ V |
| 376 |
375
|
snid |
⊢ ( 𝑀 |s 𝑆 ) ∈ { ( 𝑀 |s 𝑆 ) } |
| 377 |
4 376
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 378 |
377
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ∈ { ( 𝑀 |s 𝑆 ) } ) |
| 379 |
374 378 336
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 <s 𝑢 ) |
| 380 |
370 337 379
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → 𝐵 ≤s 𝑢 ) |
| 381 |
380
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → 𝐵 ≤s 𝑢 ) |
| 382 |
381
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝐵 ≤s 𝑢 ) |
| 383 |
364 365 366 367 369 382
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ) |
| 384 |
351 348 341 333
|
slesubsub2bd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ) ) |
| 385 |
333 341
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ∈ No ) |
| 386 |
348 351
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No ) |
| 387 |
385 386 339
|
sleadd1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
| 388 |
384 387
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
| 389 |
388
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝑢 ) -s ( 𝑙 ·s 𝐵 ) ) ≤s ( ( 𝑡 ·s 𝑢 ) -s ( 𝑡 ·s 𝐵 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) ) |
| 390 |
383 389
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 391 |
333 339 341
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 392 |
391
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) = ( ( ( 𝑡 ·s 𝐵 ) -s ( 𝑡 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 393 |
348 339 351
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 394 |
393
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( ( 𝑙 ·s 𝐵 ) -s ( 𝑙 ·s 𝑢 ) ) +s ( 𝐴 ·s 𝑢 ) ) ) |
| 395 |
390 392 394
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ) |
| 396 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝐴 ∈ No ) |
| 397 |
356
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑚 ∈ No ) |
| 398 |
|
ssltleft |
⊢ ( 𝐴 ∈ No → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
| 399 |
6 398
|
syl |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
| 400 |
399
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( L ‘ 𝐴 ) <<s { 𝐴 } ) |
| 401 |
|
snidg |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ { 𝐴 } ) |
| 402 |
6 401
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ { 𝐴 } ) |
| 403 |
402
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝐴 ∈ { 𝐴 } ) |
| 404 |
400 344 403
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 <s 𝐴 ) |
| 405 |
345 354 404
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → 𝑙 ≤s 𝐴 ) |
| 406 |
405
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑙 ≤s 𝐴 ) |
| 407 |
|
simprrr |
⊢ ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) → 𝑢 ≤s 𝑚 ) |
| 408 |
407
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → 𝑢 ≤s 𝑚 ) |
| 409 |
364 396 367 397 406 408
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ) |
| 410 |
361 358 351 339
|
slesubsub3bd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 411 |
339 351
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ∈ No ) |
| 412 |
358 361
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ∈ No ) |
| 413 |
411 412 348
|
sleadd2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) ) |
| 414 |
410 413
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) ) |
| 415 |
414
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝑚 ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( 𝐴 ·s 𝑚 ) -s ( 𝐴 ·s 𝑢 ) ) ↔ ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) ) |
| 416 |
409 415
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ≤s ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 417 |
348 339 351
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ) |
| 418 |
417
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑢 ) -s ( 𝑙 ·s 𝑢 ) ) ) ) |
| 419 |
348 358 361
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 420 |
419
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) = ( ( 𝑙 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑚 ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 421 |
416 418 420
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑙 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 422 |
343 353 363 395 421
|
sletrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 423 |
422
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ∧ ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 424 |
423
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) ∧ ( 𝑡 ∈ 𝐿 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) → ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 425 |
424
|
reximdvva |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ) → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 426 |
425
|
expcom |
⊢ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) ) |
| 427 |
426
|
com23 |
⊢ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) → ( 𝜑 → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) ) |
| 428 |
427
|
imp |
⊢ ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑙 ≤s 𝑡 ∧ 𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 429 |
327 428
|
sylan2br |
⊢ ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) ∧ ( ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ∧ ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 430 |
429
|
an4s |
⊢ ( ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) ) → ( 𝜑 → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 431 |
430
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) ) ) → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 432 |
431
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ) ∧ ( 𝑚 ∈ ( R ‘ 𝐵 ) ∧ ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 ) ) → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 433 |
432
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ) ∧ 𝑚 ∈ ( R ‘ 𝐵 ) ) → ( ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 → ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 434 |
433
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ) → ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑢 ∈ 𝑆 𝑢 ≤s 𝑚 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 435 |
326 434
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 ) ) → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 436 |
435
|
expr |
⊢ ( ( 𝜑 ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 → ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 437 |
436
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑡 ∈ 𝐿 𝑙 ≤s 𝑡 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 438 |
324 437
|
mpd |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 439 |
|
eqeq1 |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 440 |
439
|
2rexbidv |
⊢ ( 𝑐 = 𝑧 → ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ) ) |
| 441 |
440
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑧 ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 442 |
|
r19.41vv |
⊢ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 443 |
442
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧 ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 444 |
|
rexcom4 |
⊢ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑧 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧 ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 445 |
|
rexcom4 |
⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑧 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 446 |
|
ovex |
⊢ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∈ V |
| 447 |
|
breq1 |
⊢ ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) → ( 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 448 |
446 447
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 449 |
448
|
rexbii |
⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 450 |
445 449
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 451 |
450
|
rexbii |
⊢ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑧 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 452 |
444 451
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( 𝑧 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ∧ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 453 |
441 443 452
|
3bitr2i |
⊢ ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 454 |
|
ssun1 |
⊢ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) |
| 455 |
|
ssrexv |
⊢ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 456 |
454 455
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 457 |
453 456
|
sylbir |
⊢ ( ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 458 |
457
|
2ralimi |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 459 |
438 458
|
syl |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 460 |
1 3
|
cofcutr2d |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) |
| 461 |
2 4
|
cofcutr1d |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) |
| 462 |
461
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ) → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) |
| 463 |
|
reeanv |
⊢ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ↔ ( ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ∧ ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) ) |
| 464 |
170
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑅 ⊆ No ) |
| 465 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ 𝑅 ) |
| 466 |
464 465
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑣 ∈ No ) |
| 467 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐵 ∈ No ) |
| 468 |
466 467
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
| 469 |
468
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝑣 ·s 𝐵 ) ∈ No ) |
| 470 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝐴 ∈ No ) |
| 471 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑀 ⊆ No ) |
| 472 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ 𝑀 ) |
| 473 |
471 472
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → 𝑤 ∈ No ) |
| 474 |
470 473
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
| 475 |
474
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝐴 ·s 𝑤 ) ∈ No ) |
| 476 |
469 475
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) ∈ No ) |
| 477 |
466 473
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
| 478 |
477
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝑣 ·s 𝑤 ) ∈ No ) |
| 479 |
476 478
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 480 |
479
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 481 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝐴 ∈ No ) |
| 482 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ∈ ( L ‘ 𝐵 ) ) |
| 483 |
23 482
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ∈ No ) |
| 484 |
483
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝑦 ∈ No ) |
| 485 |
481 484
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No ) |
| 486 |
469 485
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ∈ No ) |
| 487 |
466
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝑣 ∈ No ) |
| 488 |
487 484
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝑣 ·s 𝑦 ) ∈ No ) |
| 489 |
486 488
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No ) |
| 490 |
489
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No ) |
| 491 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑥 ∈ ( R ‘ 𝐴 ) ) |
| 492 |
153 491
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑥 ∈ No ) |
| 493 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ No ) |
| 494 |
492 493
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 ·s 𝐵 ) ∈ No ) |
| 495 |
494
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝑥 ·s 𝐵 ) ∈ No ) |
| 496 |
495 485
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ∈ No ) |
| 497 |
492 483
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝑥 ·s 𝑦 ) ∈ No ) |
| 498 |
497
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( 𝑥 ·s 𝑦 ) ∈ No ) |
| 499 |
496 498
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No ) |
| 500 |
499
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No ) |
| 501 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝐴 ∈ No ) |
| 502 |
487
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑣 ∈ No ) |
| 503 |
483
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 ∈ No ) |
| 504 |
473
|
adantrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝑤 ∈ No ) |
| 505 |
504
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑤 ∈ No ) |
| 506 |
3
|
sneqd |
⊢ ( 𝜑 → { 𝐴 } = { ( 𝐿 |s 𝑅 ) } ) |
| 507 |
506 222
|
eqbrtrd |
⊢ ( 𝜑 → { 𝐴 } <<s 𝑅 ) |
| 508 |
507
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → { 𝐴 } <<s 𝑅 ) |
| 509 |
481 401
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝐴 ∈ { 𝐴 } ) |
| 510 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝑣 ∈ 𝑅 ) |
| 511 |
508 509 510
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝐴 <s 𝑣 ) |
| 512 |
481 487 511
|
sltled |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → 𝐴 ≤s 𝑣 ) |
| 513 |
512
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝐴 ≤s 𝑣 ) |
| 514 |
|
simprrr |
⊢ ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) → 𝑦 ≤s 𝑤 ) |
| 515 |
514
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 ≤s 𝑤 ) |
| 516 |
501 502 503 505 513 515
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ) |
| 517 |
475 478 485 488
|
slesubsubbd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) |
| 518 |
475 478
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ∈ No ) |
| 519 |
485 488
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No ) |
| 520 |
518 519 469
|
sleadd2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) ) |
| 521 |
517 520
|
bitrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) ) |
| 522 |
521
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝐴 ·s 𝑤 ) -s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( 𝑣 ·s 𝑤 ) -s ( 𝑣 ·s 𝑦 ) ) ↔ ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) ) |
| 523 |
516 522
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ≤s ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) |
| 524 |
469 475 478
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 525 |
524
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑤 ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 526 |
469 485 488
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) |
| 527 |
526
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( 𝑣 ·s 𝐵 ) +s ( ( 𝐴 ·s 𝑦 ) -s ( 𝑣 ·s 𝑦 ) ) ) ) |
| 528 |
523 525 527
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ) |
| 529 |
492
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑥 ∈ No ) |
| 530 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝐵 ∈ No ) |
| 531 |
|
simprrl |
⊢ ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) → 𝑣 ≤s 𝑥 ) |
| 532 |
531
|
adantl |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑣 ≤s 𝑥 ) |
| 533 |
493 61
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( L ‘ 𝐵 ) <<s { 𝐵 } ) |
| 534 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐵 ∈ { 𝐵 } ) |
| 535 |
533 482 534
|
ssltsepcd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 <s 𝐵 ) |
| 536 |
483 493 535
|
sltled |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝑦 ≤s 𝐵 ) |
| 537 |
536
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → 𝑦 ≤s 𝐵 ) |
| 538 |
502 529 503 530 532 537
|
slemuld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 539 |
469 488
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No ) |
| 540 |
539
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ∈ No ) |
| 541 |
495 498
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No ) |
| 542 |
541
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ∈ No ) |
| 543 |
485
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No ) |
| 544 |
540 542 543
|
sleadd1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) ) |
| 545 |
538 544
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) |
| 546 |
469 485 488
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) |
| 547 |
546
|
adantrrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) = ( ( ( 𝑣 ·s 𝐵 ) -s ( 𝑣 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) |
| 548 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → 𝐴 ∈ No ) |
| 549 |
548 483
|
mulscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( 𝐴 ·s 𝑦 ) ∈ No ) |
| 550 |
494 549 497
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) = ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) |
| 551 |
550
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) = ( ( ( 𝑥 ·s 𝐵 ) -s ( 𝑥 ·s 𝑦 ) ) +s ( 𝐴 ·s 𝑦 ) ) ) |
| 552 |
545 547 551
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑣 ·s 𝑦 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 553 |
480 490 500 528 552
|
sletrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 554 |
553
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ∧ ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 555 |
554
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) ∧ ( 𝑣 ∈ 𝑅 ∧ 𝑤 ∈ 𝑀 ) ) → ( ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) → ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 556 |
555
|
reximdvva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ) → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 557 |
556
|
expcom |
⊢ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( 𝜑 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) ) |
| 558 |
557
|
com23 |
⊢ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) → ( 𝜑 → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) ) |
| 559 |
558
|
imp |
⊢ ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑣 ≤s 𝑥 ∧ 𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 560 |
463 559
|
sylan2br |
⊢ ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) ∧ ( ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ∧ ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 561 |
560
|
an4s |
⊢ ( ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) ) → ( 𝜑 → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 562 |
561
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) ) ) → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 563 |
562
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ) ∧ ( 𝑦 ∈ ( L ‘ 𝐵 ) ∧ ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 ) ) → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 564 |
563
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ) ∧ 𝑦 ∈ ( L ‘ 𝐵 ) ) → ( ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 → ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 565 |
564
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ) → ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑤 ∈ 𝑀 𝑦 ≤s 𝑤 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 566 |
462 565
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( R ‘ 𝐴 ) ∧ ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 ) ) → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 567 |
566
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( R ‘ 𝐴 ) ) → ( ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 → ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 568 |
567
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑣 ∈ 𝑅 𝑣 ≤s 𝑥 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 569 |
460 568
|
mpd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 570 |
|
eqeq1 |
⊢ ( 𝑑 = 𝑧 → ( 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 571 |
570
|
2rexbidv |
⊢ ( 𝑑 = 𝑧 → ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ) ) |
| 572 |
571
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 573 |
|
r19.41vv |
⊢ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 574 |
573
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧 ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 575 |
|
rexcom4 |
⊢ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑧 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧 ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 576 |
|
rexcom4 |
⊢ ( ∃ 𝑤 ∈ 𝑀 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑧 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 577 |
|
ovex |
⊢ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∈ V |
| 578 |
|
breq1 |
⊢ ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) → ( 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 579 |
577 578
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 580 |
579
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝑀 ∃ 𝑧 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 581 |
576 580
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 582 |
581
|
rexbii |
⊢ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑧 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 583 |
575 582
|
bitr3i |
⊢ ( ∃ 𝑧 ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( 𝑧 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ∧ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 584 |
572 574 583
|
3bitr2i |
⊢ ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 585 |
|
ssun2 |
⊢ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) |
| 586 |
|
ssrexv |
⊢ ( { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ⊆ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) → ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 587 |
585 586
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 588 |
584 587
|
sylbir |
⊢ ( ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 589 |
588
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 590 |
569 589
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 591 |
|
ralunb |
⊢ ( ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ∧ ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 592 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑥𝑂 → ( 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 593 |
592
|
2rexbidv |
⊢ ( 𝑘 = 𝑥𝑂 → ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 594 |
593
|
ralab |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥𝑂 ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 595 |
|
r19.23v |
⊢ ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 596 |
595
|
ralbii |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 597 |
|
r19.23v |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 598 |
596 597
|
bitri |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 599 |
598
|
albii |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 600 |
|
ralcom4 |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 601 |
|
ralcom4 |
⊢ ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 602 |
|
ovex |
⊢ ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∈ V |
| 603 |
|
breq2 |
⊢ ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ( 𝑧 ≤s 𝑥𝑂 ↔ 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 604 |
603
|
rexbidv |
⊢ ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ( ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) ) |
| 605 |
602 604
|
ceqsalv |
⊢ ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 606 |
605
|
ralbii |
⊢ ( ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 607 |
601 606
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 608 |
607
|
ralbii |
⊢ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 609 |
600 608
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 610 |
594 599 609
|
3bitr2i |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ) |
| 611 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑥𝑂 → ( 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 612 |
611
|
2rexbidv |
⊢ ( 𝑛 = 𝑥𝑂 → ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ↔ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 613 |
612
|
ralab |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥𝑂 ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 614 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 615 |
614
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 616 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 617 |
615 616
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 618 |
617
|
albii |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ( ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 619 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 620 |
|
ralcom4 |
⊢ ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥𝑂 ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ) |
| 621 |
|
ovex |
⊢ ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ∈ V |
| 622 |
|
breq2 |
⊢ ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ( 𝑧 ≤s 𝑥𝑂 ↔ 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 623 |
622
|
rexbidv |
⊢ ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ( ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 624 |
621 623
|
ceqsalv |
⊢ ( ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 625 |
624
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∀ 𝑥𝑂 ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 626 |
620 625
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 627 |
626
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑥𝑂 ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 628 |
619 627
|
bitr3i |
⊢ ( ∀ 𝑥𝑂 ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ( 𝑥𝑂 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) → ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 629 |
613 618 628
|
3bitr2i |
⊢ ( ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) |
| 630 |
610 629
|
anbi12i |
⊢ ( ( ∀ 𝑥𝑂 ∈ { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ∧ ∀ 𝑥𝑂 ∈ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) ↔ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∧ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 631 |
591 630
|
bitri |
⊢ ( ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ↔ ( ∀ 𝑙 ∈ ( L ‘ 𝐴 ) ∀ 𝑚 ∈ ( R ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) ∧ ∀ 𝑥 ∈ ( R ‘ 𝐴 ) ∀ 𝑦 ∈ ( L ‘ 𝐵 ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ) ) |
| 632 |
459 590 631
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ∃ 𝑧 ∈ ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) 𝑧 ≤s 𝑥𝑂 ) |
| 633 |
1 2 3 4
|
ssltmul1 |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ) |
| 634 |
10
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } = { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } ) |
| 635 |
633 634
|
breqtrd |
⊢ ( 𝜑 → ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } ) |
| 636 |
1 2 3 4
|
ssltmul2 |
⊢ ( 𝜑 → { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
| 637 |
634 636
|
eqbrtrrd |
⊢ ( 𝜑 → { ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) |
| 638 |
11 323 632 635 637
|
cofcut1d |
⊢ ( 𝜑 → ( ( { 𝑒 ∣ ∃ 𝑓 ∈ ( L ‘ 𝐴 ) ∃ 𝑔 ∈ ( L ‘ 𝐵 ) 𝑒 = ( ( ( 𝑓 ·s 𝐵 ) +s ( 𝐴 ·s 𝑔 ) ) -s ( 𝑓 ·s 𝑔 ) ) } ∪ { ℎ ∣ ∃ 𝑖 ∈ ( R ‘ 𝐴 ) ∃ 𝑗 ∈ ( R ‘ 𝐵 ) ℎ = ( ( ( 𝑖 ·s 𝐵 ) +s ( 𝐴 ·s 𝑗 ) ) -s ( 𝑖 ·s 𝑗 ) ) } ) |s ( { 𝑘 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) ∃ 𝑚 ∈ ( R ‘ 𝐵 ) 𝑘 = ( ( ( 𝑙 ·s 𝐵 ) +s ( 𝐴 ·s 𝑚 ) ) -s ( 𝑙 ·s 𝑚 ) ) } ∪ { 𝑛 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑛 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |
| 639 |
10 638
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( ( { 𝑎 ∣ ∃ 𝑝 ∈ 𝐿 ∃ 𝑞 ∈ 𝑀 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) |s ( { 𝑐 ∣ ∃ 𝑡 ∈ 𝐿 ∃ 𝑢 ∈ 𝑆 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ 𝑅 ∃ 𝑤 ∈ 𝑀 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |