| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssltmul1.1 | ⊢ ( 𝜑  →  𝐿  <<s  𝑅 ) | 
						
							| 2 |  | ssltmul1.2 | ⊢ ( 𝜑  →  𝑀  <<s  𝑆 ) | 
						
							| 3 |  | ssltmul1.3 | ⊢ ( 𝜑  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 4 |  | ssltmul1.4 | ⊢ ( 𝜑  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  =  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) ) | 
						
							| 6 | 5 | rnmpo | ⊢ ran  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  =  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) } | 
						
							| 7 |  | ssltex1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ∈  V ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐿  ∈  V ) | 
						
							| 9 |  | ssltex1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ∈  V ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 11 | 5 | mpoexg | ⊢ ( ( 𝐿  ∈  V  ∧  𝑀  ∈  V )  →  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  ∈  V ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  ∈  V ) | 
						
							| 13 |  | rnexg | ⊢ ( ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  ∈  V  →  ran  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  ∈  V ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ran  ( 𝑝  ∈  𝐿 ,  𝑞  ∈  𝑀  ↦  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) )  ∈  V ) | 
						
							| 15 | 6 14 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∈  V ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  =  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) | 
						
							| 17 | 16 | rnmpo | ⊢ ran  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  =  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } | 
						
							| 18 |  | ssltex2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ∈  V ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 20 |  | ssltex2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ∈  V ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 22 | 16 | mpoexg | ⊢ ( ( 𝑅  ∈  V  ∧  𝑆  ∈  V )  →  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  ∈  V ) | 
						
							| 23 | 19 21 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  ∈  V ) | 
						
							| 24 |  | rnexg | ⊢ ( ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  ∈  V  →  ran  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  ∈  V ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝜑  →  ran  ( 𝑟  ∈  𝑅 ,  𝑠  ∈  𝑆  ↦  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  ∈  V ) | 
						
							| 26 | 17 25 | eqeltrrid | ⊢ ( 𝜑  →  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) }  ∈  V ) | 
						
							| 27 | 15 26 | unexd | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ∈  V ) | 
						
							| 28 |  | snex | ⊢ { ( 𝐴  ·s  𝐵 ) }  ∈  V | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  { ( 𝐴  ·s  𝐵 ) }  ∈  V ) | 
						
							| 30 |  | ssltss1 | ⊢ ( 𝐿  <<s  𝑅  →  𝐿  ⊆   No  ) | 
						
							| 31 | 1 30 | syl | ⊢ ( 𝜑  →  𝐿  ⊆   No  ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐿  ⊆   No  ) | 
						
							| 33 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑝  ∈  𝐿 ) | 
						
							| 34 | 32 33 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑝  ∈   No  ) | 
						
							| 35 | 2 | scutcld | ⊢ ( 𝜑  →  ( 𝑀  |s  𝑆 )  ∈   No  ) | 
						
							| 36 | 4 35 | eqeltrd | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐵  ∈   No  ) | 
						
							| 38 | 34 37 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝑝  ·s  𝐵 )  ∈   No  ) | 
						
							| 39 | 1 | scutcld | ⊢ ( 𝜑  →  ( 𝐿  |s  𝑅 )  ∈   No  ) | 
						
							| 40 | 3 39 | eqeltrd | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐴  ∈   No  ) | 
						
							| 42 |  | ssltss1 | ⊢ ( 𝑀  <<s  𝑆  →  𝑀  ⊆   No  ) | 
						
							| 43 | 2 42 | syl | ⊢ ( 𝜑  →  𝑀  ⊆   No  ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑀  ⊆   No  ) | 
						
							| 45 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑞  ∈  𝑀 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑞  ∈   No  ) | 
						
							| 47 | 41 46 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝑞 )  ∈   No  ) | 
						
							| 48 | 38 47 | addscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  ∈   No  ) | 
						
							| 49 | 34 46 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝑝  ·s  𝑞 )  ∈   No  ) | 
						
							| 50 | 48 49 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ∈   No  ) | 
						
							| 51 |  | eleq1 | ⊢ ( 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  ( 𝑎  ∈   No   ↔  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ∈   No  ) ) | 
						
							| 52 | 50 51 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  𝑎  ∈   No  ) ) | 
						
							| 53 | 52 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  𝑎  ∈   No  ) ) | 
						
							| 54 | 53 | abssdv | ⊢ ( 𝜑  →  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ⊆   No  ) | 
						
							| 55 |  | ssltss2 | ⊢ ( 𝐿  <<s  𝑅  →  𝑅  ⊆   No  ) | 
						
							| 56 | 1 55 | syl | ⊢ ( 𝜑  →  𝑅  ⊆   No  ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑅  ⊆   No  ) | 
						
							| 58 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑟  ∈  𝑅 ) | 
						
							| 59 | 57 58 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑟  ∈   No  ) | 
						
							| 60 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐵  ∈   No  ) | 
						
							| 61 | 59 60 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝑟  ·s  𝐵 )  ∈   No  ) | 
						
							| 62 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐴  ∈   No  ) | 
						
							| 63 |  | ssltss2 | ⊢ ( 𝑀  <<s  𝑆  →  𝑆  ⊆   No  ) | 
						
							| 64 | 2 63 | syl | ⊢ ( 𝜑  →  𝑆  ⊆   No  ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑆  ⊆   No  ) | 
						
							| 66 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑠  ∈  𝑆 ) | 
						
							| 67 | 65 66 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑠  ∈   No  ) | 
						
							| 68 | 62 67 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝑠 )  ∈   No  ) | 
						
							| 69 | 61 68 | addscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  ∈   No  ) | 
						
							| 70 | 59 67 | mulscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝑟  ·s  𝑠 )  ∈   No  ) | 
						
							| 71 | 69 70 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  ∈   No  ) | 
						
							| 72 |  | eleq1 | ⊢ ( 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  ( 𝑏  ∈   No   ↔  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  ∈   No  ) ) | 
						
							| 73 | 71 72 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  𝑏  ∈   No  ) ) | 
						
							| 74 | 73 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  𝑏  ∈   No  ) ) | 
						
							| 75 | 74 | abssdv | ⊢ ( 𝜑  →  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) }  ⊆   No  ) | 
						
							| 76 | 54 75 | unssd | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ⊆   No  ) | 
						
							| 77 | 40 36 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 78 | 77 | snssd | ⊢ ( 𝜑  →  { ( 𝐴  ·s  𝐵 ) }  ⊆   No  ) | 
						
							| 79 |  | elun | ⊢ ( 𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ↔  ( 𝑥  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∨  𝑥  ∈  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } ) ) | 
						
							| 80 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 81 |  | eqeq1 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ↔  𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) ) ) | 
						
							| 82 | 81 | 2rexbidv | ⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ↔  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) ) ) | 
						
							| 83 | 80 82 | elab | ⊢ ( 𝑥  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ↔  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) ) | 
						
							| 84 |  | eqeq1 | ⊢ ( 𝑏  =  𝑥  →  ( 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  ↔  𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) ) | 
						
							| 85 | 84 | 2rexbidv | ⊢ ( 𝑏  =  𝑥  →  ( ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) ) | 
						
							| 86 | 80 85 | elab | ⊢ ( 𝑥  ∈  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) }  ↔  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) | 
						
							| 87 | 83 86 | orbi12i | ⊢ ( ( 𝑥  ∈  { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∨  𝑥  ∈  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ↔  ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ∨  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) ) | 
						
							| 88 | 79 87 | bitri | ⊢ ( 𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ↔  ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ∨  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) ) ) | 
						
							| 89 | 38 47 49 | addsubsd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  =  ( ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  +s  ( 𝐴  ·s  𝑞 ) ) ) | 
						
							| 90 |  | scutcut | ⊢ ( 𝐿  <<s  𝑅  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 91 | 1 90 | syl | ⊢ ( 𝜑  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 92 | 91 | simp2d | ⊢ ( 𝜑  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐿  <<s  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 94 |  | ovex | ⊢ ( 𝐿  |s  𝑅 )  ∈  V | 
						
							| 95 | 94 | snid | ⊢ ( 𝐿  |s  𝑅 )  ∈  { ( 𝐿  |s  𝑅 ) } | 
						
							| 96 | 3 95 | eqeltrdi | ⊢ ( 𝜑  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 98 | 93 33 97 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑝  <s  𝐴 ) | 
						
							| 99 |  | scutcut | ⊢ ( 𝑀  <<s  𝑆  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 100 | 2 99 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 101 | 100 | simp2d | ⊢ ( 𝜑  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑀  <<s  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 103 |  | ovex | ⊢ ( 𝑀  |s  𝑆 )  ∈  V | 
						
							| 104 | 103 | snid | ⊢ ( 𝑀  |s  𝑆 )  ∈  { ( 𝑀  |s  𝑆 ) } | 
						
							| 105 | 4 104 | eqeltrdi | ⊢ ( 𝜑  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 107 | 102 45 106 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  𝑞  <s  𝐵 ) | 
						
							| 108 | 34 41 46 37 98 107 | sltmuld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  <s  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑞 ) ) ) | 
						
							| 109 | 38 49 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  ∈   No  ) | 
						
							| 110 | 77 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 111 | 109 47 110 | sltaddsubd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  +s  ( 𝐴  ·s  𝑞 ) )  <s  ( 𝐴  ·s  𝐵 )  ↔  ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  <s  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑞 ) ) ) ) | 
						
							| 112 | 108 111 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( ( 𝑝  ·s  𝐵 )  -s  ( 𝑝  ·s  𝑞 ) )  +s  ( 𝐴  ·s  𝑞 ) )  <s  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 113 | 89 112 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  <s  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 114 |  | breq1 | ⊢ ( 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  ( 𝑥  <s  ( 𝐴  ·s  𝐵 )  ↔  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 115 | 113 114 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐿  ∧  𝑞  ∈  𝑀 ) )  →  ( 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 116 | 115 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 117 | 61 68 70 | addsubsd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  =  ( ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  +s  ( 𝐴  ·s  𝑠 ) ) ) | 
						
							| 118 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐿  <<s  𝑅 ) | 
						
							| 119 | 118 90 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( 𝐿  |s  𝑅 )  ∈   No   ∧  𝐿  <<s  { ( 𝐿  |s  𝑅 ) }  ∧  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) ) | 
						
							| 120 | 119 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  { ( 𝐿  |s  𝑅 ) }  <<s  𝑅 ) | 
						
							| 121 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐴  =  ( 𝐿  |s  𝑅 ) ) | 
						
							| 122 | 121 95 | eqeltrdi | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐴  ∈  { ( 𝐿  |s  𝑅 ) } ) | 
						
							| 123 | 120 122 58 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐴  <s  𝑟 ) | 
						
							| 124 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝑀  <<s  𝑆 ) | 
						
							| 125 | 124 99 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( 𝑀  |s  𝑆 )  ∈   No   ∧  𝑀  <<s  { ( 𝑀  |s  𝑆 ) }  ∧  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) ) | 
						
							| 126 | 125 | simp3d | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  { ( 𝑀  |s  𝑆 ) }  <<s  𝑆 ) | 
						
							| 127 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐵  =  ( 𝑀  |s  𝑆 ) ) | 
						
							| 128 | 127 104 | eqeltrdi | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐵  ∈  { ( 𝑀  |s  𝑆 ) } ) | 
						
							| 129 | 126 128 66 | ssltsepcd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  𝐵  <s  𝑠 ) | 
						
							| 130 | 62 59 60 67 123 129 | sltmuld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( 𝐴  ·s  𝑠 )  -s  ( 𝐴  ·s  𝐵 ) )  <s  ( ( 𝑟  ·s  𝑠 )  -s  ( 𝑟  ·s  𝐵 ) ) ) | 
						
							| 131 | 61 70 | subscld | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  ∈   No  ) | 
						
							| 132 | 77 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝐴  ·s  𝐵 )  ∈   No  ) | 
						
							| 133 | 131 68 132 | sltaddsubd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  +s  ( 𝐴  ·s  𝑠 ) )  <s  ( 𝐴  ·s  𝐵 )  ↔  ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  <s  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑠 ) ) ) ) | 
						
							| 134 | 61 70 132 68 | sltsubsub2bd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  <s  ( ( 𝐴  ·s  𝐵 )  -s  ( 𝐴  ·s  𝑠 ) )  ↔  ( ( 𝐴  ·s  𝑠 )  -s  ( 𝐴  ·s  𝐵 ) )  <s  ( ( 𝑟  ·s  𝑠 )  -s  ( 𝑟  ·s  𝐵 ) ) ) ) | 
						
							| 135 | 133 134 | bitrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  +s  ( 𝐴  ·s  𝑠 ) )  <s  ( 𝐴  ·s  𝐵 )  ↔  ( ( 𝐴  ·s  𝑠 )  -s  ( 𝐴  ·s  𝐵 ) )  <s  ( ( 𝑟  ·s  𝑠 )  -s  ( 𝑟  ·s  𝐵 ) ) ) ) | 
						
							| 136 | 130 135 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( 𝑟  ·s  𝐵 )  -s  ( 𝑟  ·s  𝑠 ) )  +s  ( 𝐴  ·s  𝑠 ) )  <s  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 137 | 117 136 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  <s  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 138 |  | breq1 | ⊢ ( 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  ( 𝑥  <s  ( 𝐴  ·s  𝐵 )  ↔  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 139 | 137 138 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑅  ∧  𝑠  ∈  𝑆 ) )  →  ( 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 140 | 139 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 141 | 116 140 | jaod | ⊢ ( 𝜑  →  ( ( ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑥  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) )  ∨  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑥  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 142 | 88 141 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 143 | 142 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } ) )  →  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 144 |  | velsn | ⊢ ( 𝑦  ∈  { ( 𝐴  ·s  𝐵 ) }  ↔  𝑦  =  ( 𝐴  ·s  𝐵 ) ) | 
						
							| 145 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐴  ·s  𝐵 )  →  ( 𝑥  <s  𝑦  ↔  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 146 | 144 145 | sylbi | ⊢ ( 𝑦  ∈  { ( 𝐴  ·s  𝐵 ) }  →  ( 𝑥  <s  𝑦  ↔  𝑥  <s  ( 𝐴  ·s  𝐵 ) ) ) | 
						
							| 147 | 143 146 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } ) )  →  ( 𝑦  ∈  { ( 𝐴  ·s  𝐵 ) }  →  𝑥  <s  𝑦 ) ) | 
						
							| 148 | 147 | 3impia | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  ∧  𝑦  ∈  { ( 𝐴  ·s  𝐵 ) } )  →  𝑥  <s  𝑦 ) | 
						
							| 149 | 27 29 76 78 148 | ssltd | ⊢ ( 𝜑  →  ( { 𝑎  ∣  ∃ 𝑝  ∈  𝐿 ∃ 𝑞  ∈  𝑀 𝑎  =  ( ( ( 𝑝  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑞 ) )  -s  ( 𝑝  ·s  𝑞 ) ) }  ∪  { 𝑏  ∣  ∃ 𝑟  ∈  𝑅 ∃ 𝑠  ∈  𝑆 𝑏  =  ( ( ( 𝑟  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑠 ) )  -s  ( 𝑟  ·s  𝑠 ) ) } )  <<s  { ( 𝐴  ·s  𝐵 ) } ) |