| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssltmul1.1 |  |-  ( ph -> L < | 
						
							| 2 |  | ssltmul1.2 |  |-  ( ph -> M < | 
						
							| 3 |  | ssltmul1.3 |  |-  ( ph -> A = ( L |s R ) ) | 
						
							| 4 |  | ssltmul1.4 |  |-  ( ph -> B = ( M |s S ) ) | 
						
							| 5 |  | eqid |  |-  ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) | 
						
							| 6 | 5 | rnmpo |  |-  ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) = { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } | 
						
							| 7 |  | ssltex1 |  |-  ( L < L e. _V ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> L e. _V ) | 
						
							| 9 |  | ssltex1 |  |-  ( M < M e. _V ) | 
						
							| 10 | 2 9 | syl |  |-  ( ph -> M e. _V ) | 
						
							| 11 | 5 | mpoexg |  |-  ( ( L e. _V /\ M e. _V ) -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ph -> ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) | 
						
							| 13 |  | rnexg |  |-  ( ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ran ( p e. L , q e. M |-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) e. _V ) | 
						
							| 15 | 6 14 | eqeltrrid |  |-  ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } e. _V ) | 
						
							| 16 |  | eqid |  |-  ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) | 
						
							| 17 | 16 | rnmpo |  |-  ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) = { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } | 
						
							| 18 |  | ssltex2 |  |-  ( L < R e. _V ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> R e. _V ) | 
						
							| 20 |  | ssltex2 |  |-  ( M < S e. _V ) | 
						
							| 21 | 2 20 | syl |  |-  ( ph -> S e. _V ) | 
						
							| 22 | 16 | mpoexg |  |-  ( ( R e. _V /\ S e. _V ) -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) | 
						
							| 23 | 19 21 22 | syl2anc |  |-  ( ph -> ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) | 
						
							| 24 |  | rnexg |  |-  ( ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> ran ( r e. R , s e. S |-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) e. _V ) | 
						
							| 26 | 17 25 | eqeltrrid |  |-  ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } e. _V ) | 
						
							| 27 | 15 26 | unexd |  |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) e. _V ) | 
						
							| 28 |  | snex |  |-  { ( A x.s B ) } e. _V | 
						
							| 29 | 28 | a1i |  |-  ( ph -> { ( A x.s B ) } e. _V ) | 
						
							| 30 |  | ssltss1 |  |-  ( L < L C_ No ) | 
						
							| 31 | 1 30 | syl |  |-  ( ph -> L C_ No ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> L C_ No ) | 
						
							| 33 |  | simprl |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. L ) | 
						
							| 34 | 32 33 | sseldd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p e. No ) | 
						
							| 35 | 2 | scutcld |  |-  ( ph -> ( M |s S ) e. No ) | 
						
							| 36 | 4 35 | eqeltrd |  |-  ( ph -> B e. No ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. No ) | 
						
							| 38 | 34 37 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s B ) e. No ) | 
						
							| 39 | 1 | scutcld |  |-  ( ph -> ( L |s R ) e. No ) | 
						
							| 40 | 3 39 | eqeltrd |  |-  ( ph -> A e. No ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. No ) | 
						
							| 42 |  | ssltss1 |  |-  ( M < M C_ No ) | 
						
							| 43 | 2 42 | syl |  |-  ( ph -> M C_ No ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> M C_ No ) | 
						
							| 45 |  | simprr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. M ) | 
						
							| 46 | 44 45 | sseldd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q e. No ) | 
						
							| 47 | 41 46 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s q ) e. No ) | 
						
							| 48 | 38 47 | addscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) +s ( A x.s q ) ) e. No ) | 
						
							| 49 | 34 46 | mulscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( p x.s q ) e. No ) | 
						
							| 50 | 48 49 | subscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) | 
						
							| 51 |  | eleq1 |  |-  ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( a e. No <-> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) e. No ) ) | 
						
							| 52 | 50 51 | syl5ibrcom |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) | 
						
							| 53 | 52 | rexlimdvva |  |-  ( ph -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> a e. No ) ) | 
						
							| 54 | 53 | abssdv |  |-  ( ph -> { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } C_ No ) | 
						
							| 55 |  | ssltss2 |  |-  ( L < R C_ No ) | 
						
							| 56 | 1 55 | syl |  |-  ( ph -> R C_ No ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> R C_ No ) | 
						
							| 58 |  | simprl |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. R ) | 
						
							| 59 | 57 58 | sseldd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> r e. No ) | 
						
							| 60 | 36 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. No ) | 
						
							| 61 | 59 60 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s B ) e. No ) | 
						
							| 62 | 40 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. No ) | 
						
							| 63 |  | ssltss2 |  |-  ( M < S C_ No ) | 
						
							| 64 | 2 63 | syl |  |-  ( ph -> S C_ No ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> S C_ No ) | 
						
							| 66 |  | simprr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. S ) | 
						
							| 67 | 65 66 | sseldd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> s e. No ) | 
						
							| 68 | 62 67 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s s ) e. No ) | 
						
							| 69 | 61 68 | addscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) +s ( A x.s s ) ) e. No ) | 
						
							| 70 | 59 67 | mulscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( r x.s s ) e. No ) | 
						
							| 71 | 69 70 | subscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) | 
						
							| 72 |  | eleq1 |  |-  ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( b e. No <-> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) e. No ) ) | 
						
							| 73 | 71 72 | syl5ibrcom |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) | 
						
							| 74 | 73 | rexlimdvva |  |-  ( ph -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> b e. No ) ) | 
						
							| 75 | 74 | abssdv |  |-  ( ph -> { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } C_ No ) | 
						
							| 76 | 54 75 | unssd |  |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) C_ No ) | 
						
							| 77 | 40 36 | mulscld |  |-  ( ph -> ( A x.s B ) e. No ) | 
						
							| 78 | 77 | snssd |  |-  ( ph -> { ( A x.s B ) } C_ No ) | 
						
							| 79 |  | elun |  |-  ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) | 
						
							| 80 |  | vex |  |-  x e. _V | 
						
							| 81 |  | eqeq1 |  |-  ( a = x -> ( a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) | 
						
							| 82 | 81 | 2rexbidv |  |-  ( a = x -> ( E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) ) | 
						
							| 83 | 80 82 | elab |  |-  ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) ) | 
						
							| 84 |  | eqeq1 |  |-  ( b = x -> ( b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 85 | 84 | 2rexbidv |  |-  ( b = x -> ( E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 86 | 80 85 | elab |  |-  ( x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) | 
						
							| 87 | 83 86 | orbi12i |  |-  ( ( x e. { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } \/ x e. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 88 | 79 87 | bitri |  |-  ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) <-> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) ) | 
						
							| 89 | 38 47 49 | addsubsd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) = ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) ) ) | 
						
							| 90 |  | scutcut |  |-  ( L < ( ( L |s R ) e. No /\ L < | 
						
							| 91 | 1 90 | syl |  |-  ( ph -> ( ( L |s R ) e. No /\ L < | 
						
							| 92 | 91 | simp2d |  |-  ( ph -> L < | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> L < | 
						
							| 94 |  | ovex |  |-  ( L |s R ) e. _V | 
						
							| 95 | 94 | snid |  |-  ( L |s R ) e. { ( L |s R ) } | 
						
							| 96 | 3 95 | eqeltrdi |  |-  ( ph -> A e. { ( L |s R ) } ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> A e. { ( L |s R ) } ) | 
						
							| 98 | 93 33 97 | ssltsepcd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> p  | 
						
							| 99 |  | scutcut |  |-  ( M < ( ( M |s S ) e. No /\ M < | 
						
							| 100 | 2 99 | syl |  |-  ( ph -> ( ( M |s S ) e. No /\ M < | 
						
							| 101 | 100 | simp2d |  |-  ( ph -> M < | 
						
							| 102 | 101 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> M < | 
						
							| 103 |  | ovex |  |-  ( M |s S ) e. _V | 
						
							| 104 | 103 | snid |  |-  ( M |s S ) e. { ( M |s S ) } | 
						
							| 105 | 4 104 | eqeltrdi |  |-  ( ph -> B e. { ( M |s S ) } ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> B e. { ( M |s S ) } ) | 
						
							| 107 | 102 45 106 | ssltsepcd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> q  | 
						
							| 108 | 34 41 46 37 98 107 | sltmuld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) )  | 
						
							| 109 | 38 49 | subscld |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( p x.s B ) -s ( p x.s q ) ) e. No ) | 
						
							| 110 | 77 | adantr |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( A x.s B ) e. No ) | 
						
							| 111 | 109 47 110 | sltaddsubd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) )  ( ( p x.s B ) -s ( p x.s q ) )  | 
						
							| 112 | 108 111 | mpbird |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) -s ( p x.s q ) ) +s ( A x.s q ) )  | 
						
							| 113 | 89 112 | eqbrtrd |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) )  | 
						
							| 114 |  | breq1 |  |-  ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> ( x  ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) )  | 
						
							| 115 | 113 114 | syl5ibrcom |  |-  ( ( ph /\ ( p e. L /\ q e. M ) ) -> ( x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x  | 
						
							| 116 | 115 | rexlimdvva |  |-  ( ph -> ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) -> x  | 
						
							| 117 | 61 68 70 | addsubsd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) = ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) ) ) | 
						
							| 118 | 1 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> L < | 
						
							| 119 | 118 90 | syl |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( L |s R ) e. No /\ L < | 
						
							| 120 | 119 | simp3d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( L |s R ) } < | 
						
							| 121 | 3 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A = ( L |s R ) ) | 
						
							| 122 | 121 95 | eqeltrdi |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A e. { ( L |s R ) } ) | 
						
							| 123 | 120 122 58 | ssltsepcd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> A  | 
						
							| 124 | 2 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> M < | 
						
							| 125 | 124 99 | syl |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( M |s S ) e. No /\ M < | 
						
							| 126 | 125 | simp3d |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> { ( M |s S ) } < | 
						
							| 127 | 4 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B = ( M |s S ) ) | 
						
							| 128 | 127 104 | eqeltrdi |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B e. { ( M |s S ) } ) | 
						
							| 129 | 126 128 66 | ssltsepcd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> B  | 
						
							| 130 | 62 59 60 67 123 129 | sltmuld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( A x.s s ) -s ( A x.s B ) )  | 
						
							| 131 | 61 70 | subscld |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( r x.s B ) -s ( r x.s s ) ) e. No ) | 
						
							| 132 | 77 | adantr |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( A x.s B ) e. No ) | 
						
							| 133 | 131 68 132 | sltaddsubd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )  ( ( r x.s B ) -s ( r x.s s ) )  | 
						
							| 134 | 61 70 132 68 | sltsubsub2bd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) )  ( ( A x.s s ) -s ( A x.s B ) )  | 
						
							| 135 | 133 134 | bitrd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )  ( ( A x.s s ) -s ( A x.s B ) )  | 
						
							| 136 | 130 135 | mpbird |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) -s ( r x.s s ) ) +s ( A x.s s ) )  | 
						
							| 137 | 117 136 | eqbrtrd |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) )  | 
						
							| 138 |  | breq1 |  |-  ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> ( x  ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) )  | 
						
							| 139 | 137 138 | syl5ibrcom |  |-  ( ( ph /\ ( r e. R /\ s e. S ) ) -> ( x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x  | 
						
							| 140 | 139 | rexlimdvva |  |-  ( ph -> ( E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) -> x  | 
						
							| 141 | 116 140 | jaod |  |-  ( ph -> ( ( E. p e. L E. q e. M x = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) \/ E. r e. R E. s e. S x = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) ) -> x  | 
						
							| 142 | 88 141 | biimtrid |  |-  ( ph -> ( x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) -> x  | 
						
							| 143 | 142 | imp |  |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> x  | 
						
							| 144 |  | velsn |  |-  ( y e. { ( A x.s B ) } <-> y = ( A x.s B ) ) | 
						
							| 145 |  | breq2 |  |-  ( y = ( A x.s B ) -> ( x  x  | 
						
							| 146 | 144 145 | sylbi |  |-  ( y e. { ( A x.s B ) } -> ( x  x  | 
						
							| 147 | 143 146 | syl5ibrcom |  |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) ) -> ( y e. { ( A x.s B ) } -> x  | 
						
							| 148 | 147 | 3impia |  |-  ( ( ph /\ x e. ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) /\ y e. { ( A x.s B ) } ) -> x  | 
						
							| 149 | 27 29 76 78 148 | ssltd |  |-  ( ph -> ( { a | E. p e. L E. q e. M a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. R E. s e. S b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |