Metamath Proof Explorer


Theorem 2clwwlk2clwwlk

Description: An element of the value of operation C , i.e., a word being a double loop of length N on vertex X , is composed of two closed walks. (Contributed by AV, 28-Apr-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypothesis 2clwwlk.c C=vV,n2wvClWWalksNOnGn|wn2=v
Assertion 2clwwlk2clwwlk XVN3WXCNaXClWWalksNOnGN2bXClWWalksNOnG2W=a++b

Proof

Step Hyp Ref Expression
1 2clwwlk.c C=vV,n2wvClWWalksNOnGn|wn2=v
2 uzuzle23 N3N2
3 1 2clwwlkel XVN2WXCNWXClWWalksNOnGNWN2=X
4 2 3 sylan2 XVN3WXCNWXClWWalksNOnGNWN2=X
5 simpr XVN3N3
6 5 anim1i XVN3WXClWWalksNOnGNWN2=XN3WXClWWalksNOnGNWN2=X
7 3anass N3WXClWWalksNOnGNWN2=XN3WXClWWalksNOnGNWN2=X
8 6 7 sylibr XVN3WXClWWalksNOnGNWN2=XN3WXClWWalksNOnGNWN2=X
9 clwwnonrepclwwnon N3WXClWWalksNOnGNWN2=XWprefixN2XClWWalksNOnGN2
10 8 9 syl XVN3WXClWWalksNOnGNWN2=XWprefixN2XClWWalksNOnGN2
11 5 adantr XVN3WXClWWalksNOnGNWN2=XN3
12 simprl XVN3WXClWWalksNOnGNWN2=XWXClWWalksNOnGN
13 simprr XVN3WXClWWalksNOnGNWN2=XWN2=X
14 isclwwlknon WXClWWalksNOnGNWNClWWalksNGW0=X
15 simpr WNClWWalksNGW0=XW0=X
16 15 eqcomd WNClWWalksNGW0=XX=W0
17 14 16 sylbi WXClWWalksNOnGNX=W0
18 17 ad2antrl XVN3WXClWWalksNOnGNWN2=XX=W0
19 13 18 eqtrd XVN3WXClWWalksNOnGNWN2=XWN2=W0
20 2clwwlk2clwwlklem N3WXClWWalksNOnGNWN2=W0WsubstrN2NXClWWalksNOnG2
21 11 12 19 20 syl3anc XVN3WXClWWalksNOnGNWN2=XWsubstrN2NXClWWalksNOnG2
22 eqid VtxG=VtxG
23 22 clwwlknbp WNClWWalksNGWWordVtxGW=N
24 opeq2 N=WN2N=N2W
25 24 oveq2d N=WWsubstrN2N=WsubstrN2W
26 25 oveq2d N=WWprefixN2++WsubstrN2N=WprefixN2++WsubstrN2W
27 26 eqcoms W=NWprefixN2++WsubstrN2N=WprefixN2++WsubstrN2W
28 27 ad2antlr WWordVtxGW=NXVN3WprefixN2++WsubstrN2N=WprefixN2++WsubstrN2W
29 simpl WWordVtxGW=NWWordVtxG
30 fz1ssfz0 1N0N
31 ige3m2fz N3N21N
32 30 31 sselid N3N20N
33 32 adantl XVN3N20N
34 33 adantl WWordVtxGW=NXVN3N20N
35 oveq2 W=N0W=0N
36 35 eleq2d W=NN20WN20N
37 36 ad2antlr WWordVtxGW=NXVN3N20WN20N
38 34 37 mpbird WWordVtxGW=NXVN3N20W
39 pfxcctswrd WWordVtxGN20WWprefixN2++WsubstrN2W=W
40 29 38 39 syl2an2r WWordVtxGW=NXVN3WprefixN2++WsubstrN2W=W
41 28 40 eqtrd WWordVtxGW=NXVN3WprefixN2++WsubstrN2N=W
42 23 41 sylan WNClWWalksNGXVN3WprefixN2++WsubstrN2N=W
43 42 ex WNClWWalksNGXVN3WprefixN2++WsubstrN2N=W
44 43 adantr WNClWWalksNGW0=XXVN3WprefixN2++WsubstrN2N=W
45 14 44 sylbi WXClWWalksNOnGNXVN3WprefixN2++WsubstrN2N=W
46 45 adantr WXClWWalksNOnGNWN2=XXVN3WprefixN2++WsubstrN2N=W
47 46 impcom XVN3WXClWWalksNOnGNWN2=XWprefixN2++WsubstrN2N=W
48 47 eqcomd XVN3WXClWWalksNOnGNWN2=XW=WprefixN2++WsubstrN2N
49 10 21 48 3jca XVN3WXClWWalksNOnGNWN2=XWprefixN2XClWWalksNOnGN2WsubstrN2NXClWWalksNOnG2W=WprefixN2++WsubstrN2N
50 49 ex XVN3WXClWWalksNOnGNWN2=XWprefixN2XClWWalksNOnGN2WsubstrN2NXClWWalksNOnG2W=WprefixN2++WsubstrN2N
51 4 50 sylbid XVN3WXCNWprefixN2XClWWalksNOnGN2WsubstrN2NXClWWalksNOnG2W=WprefixN2++WsubstrN2N
52 rspceov WprefixN2XClWWalksNOnGN2WsubstrN2NXClWWalksNOnG2W=WprefixN2++WsubstrN2NaXClWWalksNOnGN2bXClWWalksNOnG2W=a++b
53 51 52 syl6 XVN3WXCNaXClWWalksNOnGN2bXClWWalksNOnG2W=a++b
54 eluzelcn N3N
55 2cnd N32
56 54 55 npcand N3N-2+2=N
57 56 adantl XVN3N-2+2=N
58 57 oveq2d XVN3XClWWalksNOnGN-2+2=XClWWalksNOnGN
59 58 eleq2d XVN3a++bXClWWalksNOnGN-2+2a++bXClWWalksNOnGN
60 59 biimpd XVN3a++bXClWWalksNOnGN-2+2a++bXClWWalksNOnGN
61 clwwlknonccat aXClWWalksNOnGN2bXClWWalksNOnG2a++bXClWWalksNOnGN-2+2
62 60 61 impel XVN3aXClWWalksNOnGN2bXClWWalksNOnG2a++bXClWWalksNOnGN
63 isclwwlknon bXClWWalksNOnG2b2ClWWalksNGb0=X
64 clwwlkn2 b2ClWWalksNGb=2bWordVtxGb0b1EdgG
65 isclwwlknon aXClWWalksNOnGN2aN2ClWWalksNGa0=X
66 22 clwwlknbp aN2ClWWalksNGaWordVtxGa=N2
67 simpl aWordVtxGb=2bWordVtxGaWordVtxG
68 simprr aWordVtxGb=2bWordVtxGbWordVtxG
69 2nn 2
70 lbfzo0 00..^22
71 69 70 mpbir 00..^2
72 oveq2 b=20..^b=0..^2
73 71 72 eleqtrrid b=200..^b
74 73 ad2antrl aWordVtxGb=2bWordVtxG00..^b
75 67 68 74 3jca aWordVtxGb=2bWordVtxGaWordVtxGbWordVtxG00..^b
76 75 adantr aWordVtxGb=2bWordVtxGb0=Xa=N2aWordVtxGbWordVtxG00..^b
77 76 adantr aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3aWordVtxGbWordVtxG00..^b
78 ccatval3 aWordVtxGbWordVtxG00..^ba++b0+a=b0
79 77 78 syl aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3a++b0+a=b0
80 simpr b0=Xa=N2a=N2
81 80 oveq2d b0=Xa=N20+a=0+N-2
82 81 adantl aWordVtxGb=2bWordVtxGb0=Xa=N20+a=0+N-2
83 54 55 subcld N3N2
84 83 addlidd N30+N-2=N2
85 84 adantl XVN30+N-2=N2
86 82 85 sylan9eq aWordVtxGb=2bWordVtxGb0=Xa=N2XVN30+a=N2
87 86 eqcomd aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3N2=0+a
88 87 fveq2d aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3a++bN2=a++b0+a
89 simpl b0=Xa=N2b0=X
90 89 eqcomd b0=Xa=N2X=b0
91 90 ad2antlr aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3X=b0
92 79 88 91 3eqtr4d aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3a++bN2=X
93 92 exp53 aWordVtxGb=2bWordVtxGb0=Xa=N2XVN3a++bN2=X
94 93 com24 aWordVtxGa=N2b0=Xb=2bWordVtxGXVN3a++bN2=X
95 94 imp aWordVtxGa=N2b0=Xb=2bWordVtxGXVN3a++bN2=X
96 66 95 syl aN2ClWWalksNGb0=Xb=2bWordVtxGXVN3a++bN2=X
97 96 adantr aN2ClWWalksNGa0=Xb0=Xb=2bWordVtxGXVN3a++bN2=X
98 65 97 sylbi aXClWWalksNOnGN2b0=Xb=2bWordVtxGXVN3a++bN2=X
99 98 com13 b=2bWordVtxGb0=XaXClWWalksNOnGN2XVN3a++bN2=X
100 99 3adant3 b=2bWordVtxGb0b1EdgGb0=XaXClWWalksNOnGN2XVN3a++bN2=X
101 64 100 sylbi b2ClWWalksNGb0=XaXClWWalksNOnGN2XVN3a++bN2=X
102 101 imp b2ClWWalksNGb0=XaXClWWalksNOnGN2XVN3a++bN2=X
103 63 102 sylbi bXClWWalksNOnG2aXClWWalksNOnGN2XVN3a++bN2=X
104 103 impcom aXClWWalksNOnGN2bXClWWalksNOnG2XVN3a++bN2=X
105 104 impcom XVN3aXClWWalksNOnGN2bXClWWalksNOnG2a++bN2=X
106 1 2clwwlkel XVN2a++bXCNa++bXClWWalksNOnGNa++bN2=X
107 2 106 sylan2 XVN3a++bXCNa++bXClWWalksNOnGNa++bN2=X
108 107 adantr XVN3aXClWWalksNOnGN2bXClWWalksNOnG2a++bXCNa++bXClWWalksNOnGNa++bN2=X
109 62 105 108 mpbir2and XVN3aXClWWalksNOnGN2bXClWWalksNOnG2a++bXCN
110 eleq1 W=a++bWXCNa++bXCN
111 109 110 syl5ibrcom XVN3aXClWWalksNOnGN2bXClWWalksNOnG2W=a++bWXCN
112 111 rexlimdvva XVN3aXClWWalksNOnGN2bXClWWalksNOnG2W=a++bWXCN
113 53 112 impbid XVN3WXCNaXClWWalksNOnGN2bXClWWalksNOnG2W=a++b