| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
|
| 2 |
|
2sqlem6.1 |
|
| 3 |
|
2sqlem6.2 |
|
| 4 |
|
2sqlem6.3 |
|
| 5 |
|
2sqlem6.4 |
|
| 6 |
|
breq2 |
|
| 7 |
6
|
imbi1d |
|
| 8 |
7
|
ralbidv |
|
| 9 |
|
oveq2 |
|
| 10 |
9
|
eleq1d |
|
| 11 |
10
|
imbi1d |
|
| 12 |
11
|
ralbidv |
|
| 13 |
8 12
|
imbi12d |
|
| 14 |
|
breq2 |
|
| 15 |
14
|
imbi1d |
|
| 16 |
15
|
ralbidv |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
18
|
imbi1d |
|
| 20 |
19
|
ralbidv |
|
| 21 |
16 20
|
imbi12d |
|
| 22 |
|
breq2 |
|
| 23 |
22
|
imbi1d |
|
| 24 |
23
|
ralbidv |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
26
|
imbi1d |
|
| 28 |
27
|
ralbidv |
|
| 29 |
24 28
|
imbi12d |
|
| 30 |
|
breq2 |
|
| 31 |
30
|
imbi1d |
|
| 32 |
31
|
ralbidv |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
34
|
imbi1d |
|
| 36 |
35
|
ralbidv |
|
| 37 |
32 36
|
imbi12d |
|
| 38 |
|
breq2 |
|
| 39 |
38
|
imbi1d |
|
| 40 |
39
|
ralbidv |
|
| 41 |
|
oveq2 |
|
| 42 |
41
|
eleq1d |
|
| 43 |
42
|
imbi1d |
|
| 44 |
43
|
ralbidv |
|
| 45 |
40 44
|
imbi12d |
|
| 46 |
|
nncn |
|
| 47 |
46
|
mulridd |
|
| 48 |
47
|
eleq1d |
|
| 49 |
48
|
biimpd |
|
| 50 |
49
|
rgen |
|
| 51 |
50
|
a1i |
|
| 52 |
|
breq1 |
|
| 53 |
|
eleq1 |
|
| 54 |
52 53
|
imbi12d |
|
| 55 |
54
|
rspcv |
|
| 56 |
|
prmz |
|
| 57 |
|
iddvds |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
simprl |
|
| 60 |
|
simpll |
|
| 61 |
|
simprr |
|
| 62 |
|
simplr |
|
| 63 |
1 59 60 61 62
|
2sqlem5 |
|
| 64 |
63
|
expr |
|
| 65 |
64
|
ralrimiva |
|
| 66 |
65
|
ex |
|
| 67 |
58 66
|
embantd |
|
| 68 |
55 67
|
syld |
|
| 69 |
|
anim12 |
|
| 70 |
|
simpr |
|
| 71 |
|
eluzelz |
|
| 72 |
71
|
ad2antrr |
|
| 73 |
|
eluzelz |
|
| 74 |
73
|
ad2antlr |
|
| 75 |
|
euclemma |
|
| 76 |
70 72 74 75
|
syl3anc |
|
| 77 |
76
|
imbi1d |
|
| 78 |
|
jaob |
|
| 79 |
77 78
|
bitrdi |
|
| 80 |
79
|
ralbidva |
|
| 81 |
|
r19.26 |
|
| 82 |
80 81
|
bitrdi |
|
| 83 |
82
|
biimpa |
|
| 84 |
|
oveq1 |
|
| 85 |
84
|
eleq1d |
|
| 86 |
|
eleq1 |
|
| 87 |
85 86
|
imbi12d |
|
| 88 |
87
|
cbvralvw |
|
| 89 |
46
|
adantl |
|
| 90 |
|
uzssz |
|
| 91 |
|
zsscn |
|
| 92 |
90 91
|
sstri |
|
| 93 |
|
simpll |
|
| 94 |
93
|
ad2antrr |
|
| 95 |
92 94
|
sselid |
|
| 96 |
|
simplr |
|
| 97 |
96
|
ad2antrr |
|
| 98 |
92 97
|
sselid |
|
| 99 |
|
mul32 |
|
| 100 |
|
mulass |
|
| 101 |
99 100
|
eqtr3d |
|
| 102 |
89 95 98 101
|
syl3anc |
|
| 103 |
102
|
eleq1d |
|
| 104 |
|
simpr |
|
| 105 |
|
eluz2nn |
|
| 106 |
97 105
|
syl |
|
| 107 |
104 106
|
nnmulcld |
|
| 108 |
|
simplr |
|
| 109 |
|
oveq1 |
|
| 110 |
109
|
eleq1d |
|
| 111 |
|
eleq1 |
|
| 112 |
110 111
|
imbi12d |
|
| 113 |
112
|
rspcv |
|
| 114 |
107 108 113
|
sylc |
|
| 115 |
103 114
|
sylbird |
|
| 116 |
115
|
imim1d |
|
| 117 |
116
|
ralimdva |
|
| 118 |
88 117
|
sylan2b |
|
| 119 |
118
|
expimpd |
|
| 120 |
83 119
|
embantd |
|
| 121 |
120
|
ex |
|
| 122 |
121
|
com23 |
|
| 123 |
69 122
|
syl5 |
|
| 124 |
13 21 29 37 45 51 68 123
|
prmind |
|
| 125 |
3 4 124
|
sylc |
|
| 126 |
|
oveq1 |
|
| 127 |
126
|
eleq1d |
|
| 128 |
|
eleq1 |
|
| 129 |
127 128
|
imbi12d |
|
| 130 |
129
|
rspcv |
|
| 131 |
2 125 5 130
|
syl3c |
|