Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2sq.1 | |
|
2sqlem7.2 | |
||
2sqlem9.5 | |
||
2sqlem9.7 | |
||
2sqlem9.6 | |
||
2sqlem9.4 | |
||
Assertion | 2sqlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sq.1 | |
|
2 | 2sqlem7.2 | |
|
3 | 2sqlem9.5 | |
|
4 | 2sqlem9.7 | |
|
5 | 2sqlem9.6 | |
|
6 | 2sqlem9.4 | |
|
7 | eqeq1 | |
|
8 | 7 | anbi2d | |
9 | 8 | 2rexbidv | |
10 | oveq1 | |
|
11 | 10 | eqeq1d | |
12 | oveq1 | |
|
13 | 12 | oveq1d | |
14 | 13 | eqeq2d | |
15 | 11 14 | anbi12d | |
16 | oveq2 | |
|
17 | 16 | eqeq1d | |
18 | oveq1 | |
|
19 | 18 | oveq2d | |
20 | 19 | eqeq2d | |
21 | 17 20 | anbi12d | |
22 | 15 21 | cbvrex2vw | |
23 | 9 22 | bitrdi | |
24 | 23 2 | elab2g | |
25 | 24 | ibi | |
26 | 6 25 | syl | |
27 | simpr | |
|
28 | 1z | |
|
29 | zgz | |
|
30 | 28 29 | ax-mp | |
31 | sq1 | |
|
32 | 31 | eqcomi | |
33 | fveq2 | |
|
34 | abs1 | |
|
35 | 33 34 | eqtrdi | |
36 | 35 | oveq1d | |
37 | 36 | rspceeqv | |
38 | 30 32 37 | mp2an | |
39 | 1 | 2sqlem1 | |
40 | 38 39 | mpbir | |
41 | 27 40 | eqeltrdi | |
42 | 3 | ad2antrr | |
43 | 4 | ad2antrr | |
44 | 1 2 | 2sqlem7 | |
45 | inss2 | |
|
46 | 44 45 | sstri | |
47 | 46 6 | sselid | |
48 | 47 | ad2antrr | |
49 | 5 | ad2antrr | |
50 | simprr | |
|
51 | eluz2b3 | |
|
52 | 49 50 51 | sylanbrc | |
53 | simplrl | |
|
54 | simplrr | |
|
55 | simprll | |
|
56 | simprlr | |
|
57 | eqid | |
|
58 | eqid | |
|
59 | eqid | |
|
60 | eqid | |
|
61 | 1 2 42 43 48 52 53 54 55 56 57 58 59 60 | 2sqlem8 | |
62 | 61 | anassrs | |
63 | 41 62 | pm2.61dane | |
64 | 63 | ex | |
65 | 64 | rexlimdvva | |
66 | 26 65 | mpd | |