Metamath Proof Explorer


Theorem 2sqlem9

Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses 2sq.1 S=ranwiw2
2sqlem7.2 Y=z|xyxgcdy=1z=x2+y2
2sqlem9.5 φb1M1aYbabS
2sqlem9.7 φMN
2sqlem9.6 φM
2sqlem9.4 φNY
Assertion 2sqlem9 φMS

Proof

Step Hyp Ref Expression
1 2sq.1 S=ranwiw2
2 2sqlem7.2 Y=z|xyxgcdy=1z=x2+y2
3 2sqlem9.5 φb1M1aYbabS
4 2sqlem9.7 φMN
5 2sqlem9.6 φM
6 2sqlem9.4 φNY
7 eqeq1 z=Nz=x2+y2N=x2+y2
8 7 anbi2d z=Nxgcdy=1z=x2+y2xgcdy=1N=x2+y2
9 8 2rexbidv z=Nxyxgcdy=1z=x2+y2xyxgcdy=1N=x2+y2
10 oveq1 x=uxgcdy=ugcdy
11 10 eqeq1d x=uxgcdy=1ugcdy=1
12 oveq1 x=ux2=u2
13 12 oveq1d x=ux2+y2=u2+y2
14 13 eqeq2d x=uN=x2+y2N=u2+y2
15 11 14 anbi12d x=uxgcdy=1N=x2+y2ugcdy=1N=u2+y2
16 oveq2 y=vugcdy=ugcdv
17 16 eqeq1d y=vugcdy=1ugcdv=1
18 oveq1 y=vy2=v2
19 18 oveq2d y=vu2+y2=u2+v2
20 19 eqeq2d y=vN=u2+y2N=u2+v2
21 17 20 anbi12d y=vugcdy=1N=u2+y2ugcdv=1N=u2+v2
22 15 21 cbvrex2vw xyxgcdy=1N=x2+y2uvugcdv=1N=u2+v2
23 9 22 bitrdi z=Nxyxgcdy=1z=x2+y2uvugcdv=1N=u2+v2
24 23 2 elab2g NYNYuvugcdv=1N=u2+v2
25 24 ibi NYuvugcdv=1N=u2+v2
26 6 25 syl φuvugcdv=1N=u2+v2
27 simpr φuvugcdv=1N=u2+v2M=1M=1
28 1z 1
29 zgz 11i
30 28 29 ax-mp 1i
31 sq1 12=1
32 31 eqcomi 1=12
33 fveq2 x=1x=1
34 abs1 1=1
35 33 34 eqtrdi x=1x=1
36 35 oveq1d x=1x2=12
37 36 rspceeqv 1i1=12xi1=x2
38 30 32 37 mp2an xi1=x2
39 1 2sqlem1 1Sxi1=x2
40 38 39 mpbir 1S
41 27 40 eqeltrdi φuvugcdv=1N=u2+v2M=1MS
42 3 ad2antrr φuvugcdv=1N=u2+v2M1b1M1aYbabS
43 4 ad2antrr φuvugcdv=1N=u2+v2M1MN
44 1 2 2sqlem7 YS
45 inss2 S
46 44 45 sstri Y
47 46 6 sselid φN
48 47 ad2antrr φuvugcdv=1N=u2+v2M1N
49 5 ad2antrr φuvugcdv=1N=u2+v2M1M
50 simprr φuvugcdv=1N=u2+v2M1M1
51 eluz2b3 M2MM1
52 49 50 51 sylanbrc φuvugcdv=1N=u2+v2M1M2
53 simplrl φuvugcdv=1N=u2+v2M1u
54 simplrr φuvugcdv=1N=u2+v2M1v
55 simprll φuvugcdv=1N=u2+v2M1ugcdv=1
56 simprlr φuvugcdv=1N=u2+v2M1N=u2+v2
57 eqid u+M2modMM2=u+M2modMM2
58 eqid v+M2modMM2=v+M2modMM2
59 eqid u+M2modMM2u+M2modMM2gcdv+M2modMM2=u+M2modMM2u+M2modMM2gcdv+M2modMM2
60 eqid v+M2modMM2u+M2modMM2gcdv+M2modMM2=v+M2modMM2u+M2modMM2gcdv+M2modMM2
61 1 2 42 43 48 52 53 54 55 56 57 58 59 60 2sqlem8 φuvugcdv=1N=u2+v2M1MS
62 61 anassrs φuvugcdv=1N=u2+v2M1MS
63 41 62 pm2.61dane φuvugcdv=1N=u2+v2MS
64 63 ex φuvugcdv=1N=u2+v2MS
65 64 rexlimdvva φuvugcdv=1N=u2+v2MS
66 26 65 mpd φMS