Metamath Proof Explorer


Theorem 2sqreulem1

Description: Lemma 1 for 2sqreu . (Contributed by AV, 4-Jun-2023)

Ref Expression
Assertion 2sqreulem1 PPmod4=1∃!a0∃!b0aba2+b2=P

Proof

Step Hyp Ref Expression
1 2sqnn0 PPmod4=1x0y0P=x2+y2
2 simpll x0y0P=x2+y2x0
3 2 adantl xyx0y0P=x2+y2x0
4 breq1 a=xabxb
5 oveq1 a=xa2=x2
6 5 oveq1d a=xa2+b2=x2+b2
7 6 eqeq1d a=xa2+b2=Px2+b2=P
8 4 7 anbi12d a=xaba2+b2=Pxbx2+b2=P
9 8 reubidv a=x∃!b0aba2+b2=P∃!b0xbx2+b2=P
10 9 adantl xyx0y0P=x2+y2a=x∃!b0aba2+b2=P∃!b0xbx2+b2=P
11 simpr x0y0y0
12 11 adantr x0y0xyy0
13 breq2 b=yxbxy
14 oveq1 b=yb2=y2
15 14 oveq2d b=yx2+b2=x2+y2
16 15 eqeq1d b=yx2+b2=x2+y2x2+y2=x2+y2
17 13 16 anbi12d b=yxbx2+b2=x2+y2xyx2+y2=x2+y2
18 equequ1 b=yb=cy=c
19 18 imbi2d b=yxcx2+c2=x2+y2b=cxcx2+c2=x2+y2y=c
20 19 ralbidv b=yc0xcx2+c2=x2+y2b=cc0xcx2+c2=x2+y2y=c
21 17 20 anbi12d b=yxbx2+b2=x2+y2c0xcx2+c2=x2+y2b=cxyx2+y2=x2+y2c0xcx2+c2=x2+y2y=c
22 21 adantl x0y0xyb=yxbx2+b2=x2+y2c0xcx2+c2=x2+y2b=cxyx2+y2=x2+y2c0xcx2+c2=x2+y2y=c
23 simpr x0y0xyxy
24 eqidd x0y0xyx2+y2=x2+y2
25 nn0re c0c
26 25 resqcld c0c2
27 26 adantl x0y0xyc0c2
28 nn0re y0y
29 28 resqcld y0y2
30 29 adantl x0y0y2
31 30 ad2antrr x0y0xyc0y2
32 nn0re x0x
33 32 resqcld x0x2
34 33 adantr x0y0x2
35 34 ad2antrr x0y0xyc0x2
36 readdcan c2y2x2x2+c2=x2+y2c2=y2
37 27 31 35 36 syl3anc x0y0xyc0x2+c2=x2+y2c2=y2
38 28 ad4antlr x0y0xyc0c2=y2y
39 25 ad2antlr x0y0xyc0c2=y2c
40 nn0ge0 y00y
41 40 ad4antlr x0y0xyc0c2=y20y
42 nn0ge0 c00c
43 42 ad2antlr x0y0xyc0c2=y20c
44 simpr x0y0xyc0c2=y2c2=y2
45 44 eqcomd x0y0xyc0c2=y2y2=c2
46 38 39 41 43 45 sq11d x0y0xyc0c2=y2y=c
47 46 ex x0y0xyc0c2=y2y=c
48 37 47 sylbid x0y0xyc0x2+c2=x2+y2y=c
49 48 adantld x0y0xyc0xcx2+c2=x2+y2y=c
50 49 ralrimiva x0y0xyc0xcx2+c2=x2+y2y=c
51 23 24 50 jca31 x0y0xyxyx2+y2=x2+y2c0xcx2+c2=x2+y2y=c
52 12 22 51 rspcedvd x0y0xyb0xbx2+b2=x2+y2c0xcx2+c2=x2+y2b=c
53 breq2 b=cxbxc
54 oveq1 b=cb2=c2
55 54 oveq2d b=cx2+b2=x2+c2
56 55 eqeq1d b=cx2+b2=x2+y2x2+c2=x2+y2
57 53 56 anbi12d b=cxbx2+b2=x2+y2xcx2+c2=x2+y2
58 57 reu8 ∃!b0xbx2+b2=x2+y2b0xbx2+b2=x2+y2c0xcx2+c2=x2+y2b=c
59 52 58 sylibr x0y0xy∃!b0xbx2+b2=x2+y2
60 59 ex x0y0xy∃!b0xbx2+b2=x2+y2
61 60 adantr x0y0P=x2+y2xy∃!b0xbx2+b2=x2+y2
62 61 impcom xyx0y0P=x2+y2∃!b0xbx2+b2=x2+y2
63 eqeq2 P=x2+y2x2+b2=Px2+b2=x2+y2
64 63 anbi2d P=x2+y2xbx2+b2=Pxbx2+b2=x2+y2
65 64 reubidv P=x2+y2∃!b0xbx2+b2=P∃!b0xbx2+b2=x2+y2
66 65 adantl x0y0P=x2+y2∃!b0xbx2+b2=P∃!b0xbx2+b2=x2+y2
67 66 adantl xyx0y0P=x2+y2∃!b0xbx2+b2=P∃!b0xbx2+b2=x2+y2
68 62 67 mpbird xyx0y0P=x2+y2∃!b0xbx2+b2=P
69 3 10 68 rspcedvd xyx0y0P=x2+y2a0∃!b0aba2+b2=P
70 11 adantr x0y0P=x2+y2y0
71 70 adantl ¬xyx0y0P=x2+y2y0
72 breq1 a=yabyb
73 oveq1 a=ya2=y2
74 73 oveq1d a=ya2+b2=y2+b2
75 74 eqeq1d a=ya2+b2=Py2+b2=P
76 72 75 anbi12d a=yaba2+b2=Pyby2+b2=P
77 76 reubidv a=y∃!b0aba2+b2=P∃!b0yby2+b2=P
78 77 adantl ¬xyx0y0P=x2+y2a=y∃!b0aba2+b2=P∃!b0yby2+b2=P
79 simpll x0y0¬xyx0
80 breq2 b=xybyx
81 oveq1 b=xb2=x2
82 81 oveq2d b=xy2+b2=y2+x2
83 82 eqeq1d b=xy2+b2=x2+y2y2+x2=x2+y2
84 80 83 anbi12d b=xyby2+b2=x2+y2yxy2+x2=x2+y2
85 equequ1 b=xb=cx=c
86 85 imbi2d b=xycy2+c2=x2+y2b=cycy2+c2=x2+y2x=c
87 86 ralbidv b=xc0ycy2+c2=x2+y2b=cc0ycy2+c2=x2+y2x=c
88 84 87 anbi12d b=xyby2+b2=x2+y2c0ycy2+c2=x2+y2b=cyxy2+x2=x2+y2c0ycy2+c2=x2+y2x=c
89 88 adantl x0y0¬xyb=xyby2+b2=x2+y2c0ycy2+c2=x2+y2b=cyxy2+x2=x2+y2c0ycy2+c2=x2+y2x=c
90 ltnle yxy<x¬xy
91 28 32 90 syl2anr x0y0y<x¬xy
92 28 ad2antlr x0y0y<xy
93 32 ad2antrr x0y0y<xx
94 simpr x0y0y<xy<x
95 92 93 94 ltled x0y0y<xyx
96 95 ex x0y0y<xyx
97 91 96 sylbird x0y0¬xyyx
98 97 imp x0y0¬xyyx
99 29 recnd y0y2
100 99 adantl x0y0y2
101 33 recnd x0x2
102 101 adantr x0y0x2
103 100 102 addcomd x0y0y2+x2=x2+y2
104 103 adantr x0y0¬xyy2+x2=x2+y2
105 34 recnd x0y0x2
106 105 adantr x0y0c0x2
107 30 recnd x0y0y2
108 107 adantr x0y0c0y2
109 106 108 addcomd x0y0c0x2+y2=y2+x2
110 109 eqeq2d x0y0c0y2+c2=x2+y2y2+c2=y2+x2
111 26 adantl x0y0c0c2
112 33 ad2antrr x0y0c0x2
113 29 ad2antlr x0y0c0y2
114 readdcan c2x2y2y2+c2=y2+x2c2=x2
115 111 112 113 114 syl3anc x0y0c0y2+c2=y2+x2c2=x2
116 110 115 bitrd x0y0c0y2+c2=x2+y2c2=x2
117 25 ad2antlr x0y0c0c2=x2c
118 32 adantr x0y0x
119 118 ad2antrr x0y0c0c2=x2x
120 42 ad2antlr x0y0c0c2=x20c
121 nn0ge0 x00x
122 121 adantr x0y00x
123 122 ad2antrr x0y0c0c2=x20x
124 simpr x0y0c0c2=x2c2=x2
125 117 119 120 123 124 sq11d x0y0c0c2=x2c=x
126 125 eqcomd x0y0c0c2=x2x=c
127 126 ex x0y0c0c2=x2x=c
128 116 127 sylbid x0y0c0y2+c2=x2+y2x=c
129 128 adantld x0y0c0ycy2+c2=x2+y2x=c
130 129 ralrimiva x0y0c0ycy2+c2=x2+y2x=c
131 130 adantr x0y0¬xyc0ycy2+c2=x2+y2x=c
132 98 104 131 jca31 x0y0¬xyyxy2+x2=x2+y2c0ycy2+c2=x2+y2x=c
133 79 89 132 rspcedvd x0y0¬xyb0yby2+b2=x2+y2c0ycy2+c2=x2+y2b=c
134 breq2 b=cybyc
135 54 oveq2d b=cy2+b2=y2+c2
136 135 eqeq1d b=cy2+b2=x2+y2y2+c2=x2+y2
137 134 136 anbi12d b=cyby2+b2=x2+y2ycy2+c2=x2+y2
138 137 reu8 ∃!b0yby2+b2=x2+y2b0yby2+b2=x2+y2c0ycy2+c2=x2+y2b=c
139 133 138 sylibr x0y0¬xy∃!b0yby2+b2=x2+y2
140 139 ex x0y0¬xy∃!b0yby2+b2=x2+y2
141 140 adantr x0y0P=x2+y2¬xy∃!b0yby2+b2=x2+y2
142 141 impcom ¬xyx0y0P=x2+y2∃!b0yby2+b2=x2+y2
143 eqeq2 P=x2+y2y2+b2=Py2+b2=x2+y2
144 143 anbi2d P=x2+y2yby2+b2=Pyby2+b2=x2+y2
145 144 reubidv P=x2+y2∃!b0yby2+b2=P∃!b0yby2+b2=x2+y2
146 145 adantl x0y0P=x2+y2∃!b0yby2+b2=P∃!b0yby2+b2=x2+y2
147 146 adantl ¬xyx0y0P=x2+y2∃!b0yby2+b2=P∃!b0yby2+b2=x2+y2
148 142 147 mpbird ¬xyx0y0P=x2+y2∃!b0yby2+b2=P
149 71 78 148 rspcedvd ¬xyx0y0P=x2+y2a0∃!b0aba2+b2=P
150 69 149 pm2.61ian x0y0P=x2+y2a0∃!b0aba2+b2=P
151 150 ex x0y0P=x2+y2a0∃!b0aba2+b2=P
152 151 adantl PPmod4=1x0y0P=x2+y2a0∃!b0aba2+b2=P
153 152 rexlimdvva PPmod4=1x0y0P=x2+y2a0∃!b0aba2+b2=P
154 1 153 mpd PPmod4=1a0∃!b0aba2+b2=P
155 reurex ∃!b0aba2+b2=Pb0aba2+b2=P
156 155 a1i PPmod4=1a0∃!b0aba2+b2=Pb0aba2+b2=P
157 156 ralrimiva PPmod4=1a0∃!b0aba2+b2=Pb0aba2+b2=P
158 2sqmo P*a0b0aba2+b2=P
159 158 adantr PPmod4=1*a0b0aba2+b2=P
160 rmoim a0∃!b0aba2+b2=Pb0aba2+b2=P*a0b0aba2+b2=P*a0∃!b0aba2+b2=P
161 157 159 160 sylc PPmod4=1*a0∃!b0aba2+b2=P
162 reu5 ∃!a0∃!b0aba2+b2=Pa0∃!b0aba2+b2=P*a0∃!b0aba2+b2=P
163 154 161 162 sylanbrc PPmod4=1∃!a0∃!b0aba2+b2=P