Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
All primes 4n+1 are the sum of two squares
2sqreulem1
Next ⟩
2sqreultlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
2sqreulem1
Description:
Lemma 1 for
2sqreu
.
(Contributed by
AV
, 4-Jun-2023)
Ref
Expression
Assertion
2sqreulem1
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃!
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
Proof
Step
Hyp
Ref
Expression
1
2sqnn0
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃
x
∈
ℕ
0
∃
y
∈
ℕ
0
P
=
x
2
+
y
2
2
simpll
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
x
∈
ℕ
0
3
2
adantl
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
x
∈
ℕ
0
4
breq1
⊢
a
=
x
→
a
≤
b
↔
x
≤
b
5
oveq1
⊢
a
=
x
→
a
2
=
x
2
6
5
oveq1d
⊢
a
=
x
→
a
2
+
b
2
=
x
2
+
b
2
7
6
eqeq1d
⊢
a
=
x
→
a
2
+
b
2
=
P
↔
x
2
+
b
2
=
P
8
4
7
anbi12d
⊢
a
=
x
→
a
≤
b
∧
a
2
+
b
2
=
P
↔
x
≤
b
∧
x
2
+
b
2
=
P
9
8
reubidv
⊢
a
=
x
→
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
10
9
adantl
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
∧
a
=
x
→
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
11
simpr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
∈
ℕ
0
12
11
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
y
∈
ℕ
0
13
breq2
⊢
b
=
y
→
x
≤
b
↔
x
≤
y
14
oveq1
⊢
b
=
y
→
b
2
=
y
2
15
14
oveq2d
⊢
b
=
y
→
x
2
+
b
2
=
x
2
+
y
2
16
15
eqeq1d
⊢
b
=
y
→
x
2
+
b
2
=
x
2
+
y
2
↔
x
2
+
y
2
=
x
2
+
y
2
17
13
16
anbi12d
⊢
b
=
y
→
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
↔
x
≤
y
∧
x
2
+
y
2
=
x
2
+
y
2
18
equequ1
⊢
b
=
y
→
b
=
c
↔
y
=
c
19
18
imbi2d
⊢
b
=
y
→
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
20
19
ralbidv
⊢
b
=
y
→
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
21
17
20
anbi12d
⊢
b
=
y
→
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
x
≤
y
∧
x
2
+
y
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
22
21
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
b
=
y
→
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
x
≤
y
∧
x
2
+
y
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
23
simpr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
x
≤
y
24
eqidd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
x
2
+
y
2
=
x
2
+
y
2
25
nn0re
⊢
c
∈
ℕ
0
→
c
∈
ℝ
26
25
resqcld
⊢
c
∈
ℕ
0
→
c
2
∈
ℝ
27
26
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
c
2
∈
ℝ
28
nn0re
⊢
y
∈
ℕ
0
→
y
∈
ℝ
29
28
resqcld
⊢
y
∈
ℕ
0
→
y
2
∈
ℝ
30
29
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
2
∈
ℝ
31
30
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
y
2
∈
ℝ
32
nn0re
⊢
x
∈
ℕ
0
→
x
∈
ℝ
33
32
resqcld
⊢
x
∈
ℕ
0
→
x
2
∈
ℝ
34
33
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
x
2
∈
ℝ
35
34
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
x
2
∈
ℝ
36
readdcan
⊢
c
2
∈
ℝ
∧
y
2
∈
ℝ
∧
x
2
∈
ℝ
→
x
2
+
c
2
=
x
2
+
y
2
↔
c
2
=
y
2
37
27
31
35
36
syl3anc
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
x
2
+
c
2
=
x
2
+
y
2
↔
c
2
=
y
2
38
28
ad4antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
y
∈
ℝ
39
25
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
c
∈
ℝ
40
nn0ge0
⊢
y
∈
ℕ
0
→
0
≤
y
41
40
ad4antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
0
≤
y
42
nn0ge0
⊢
c
∈
ℕ
0
→
0
≤
c
43
42
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
0
≤
c
44
simpr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
c
2
=
y
2
45
44
eqcomd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
y
2
=
c
2
46
38
39
41
43
45
sq11d
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
∧
c
2
=
y
2
→
y
=
c
47
46
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
c
2
=
y
2
→
y
=
c
48
37
47
sylbid
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
49
48
adantld
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
∧
c
∈
ℕ
0
→
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
50
49
ralrimiva
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
51
23
24
50
jca31
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
x
≤
y
∧
x
2
+
y
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
y
=
c
52
12
22
51
rspcedvd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
∃
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
53
breq2
⊢
b
=
c
→
x
≤
b
↔
x
≤
c
54
oveq1
⊢
b
=
c
→
b
2
=
c
2
55
54
oveq2d
⊢
b
=
c
→
x
2
+
b
2
=
x
2
+
c
2
56
55
eqeq1d
⊢
b
=
c
→
x
2
+
b
2
=
x
2
+
y
2
↔
x
2
+
c
2
=
x
2
+
y
2
57
53
56
anbi12d
⊢
b
=
c
→
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
↔
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
58
57
reu8
⊢
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
↔
∃
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
x
≤
c
∧
x
2
+
c
2
=
x
2
+
y
2
→
b
=
c
59
52
58
sylibr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
x
≤
y
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
60
59
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
x
≤
y
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
61
60
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
x
≤
y
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
62
61
impcom
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
63
eqeq2
⊢
P
=
x
2
+
y
2
→
x
2
+
b
2
=
P
↔
x
2
+
b
2
=
x
2
+
y
2
64
63
anbi2d
⊢
P
=
x
2
+
y
2
→
x
≤
b
∧
x
2
+
b
2
=
P
↔
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
65
64
reubidv
⊢
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
66
65
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
67
66
adantl
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
x
2
+
y
2
68
62
67
mpbird
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
x
≤
b
∧
x
2
+
b
2
=
P
69
3
10
68
rspcedvd
⊢
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
70
11
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
y
∈
ℕ
0
71
70
adantl
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
y
∈
ℕ
0
72
breq1
⊢
a
=
y
→
a
≤
b
↔
y
≤
b
73
oveq1
⊢
a
=
y
→
a
2
=
y
2
74
73
oveq1d
⊢
a
=
y
→
a
2
+
b
2
=
y
2
+
b
2
75
74
eqeq1d
⊢
a
=
y
→
a
2
+
b
2
=
P
↔
y
2
+
b
2
=
P
76
72
75
anbi12d
⊢
a
=
y
→
a
≤
b
∧
a
2
+
b
2
=
P
↔
y
≤
b
∧
y
2
+
b
2
=
P
77
76
reubidv
⊢
a
=
y
→
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
78
77
adantl
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
∧
a
=
y
→
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
79
simpll
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
x
∈
ℕ
0
80
breq2
⊢
b
=
x
→
y
≤
b
↔
y
≤
x
81
oveq1
⊢
b
=
x
→
b
2
=
x
2
82
81
oveq2d
⊢
b
=
x
→
y
2
+
b
2
=
y
2
+
x
2
83
82
eqeq1d
⊢
b
=
x
→
y
2
+
b
2
=
x
2
+
y
2
↔
y
2
+
x
2
=
x
2
+
y
2
84
80
83
anbi12d
⊢
b
=
x
→
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
↔
y
≤
x
∧
y
2
+
x
2
=
x
2
+
y
2
85
equequ1
⊢
b
=
x
→
b
=
c
↔
x
=
c
86
85
imbi2d
⊢
b
=
x
→
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
87
86
ralbidv
⊢
b
=
x
→
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
88
84
87
anbi12d
⊢
b
=
x
→
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
y
≤
x
∧
y
2
+
x
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
89
88
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
∧
b
=
x
→
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
↔
y
≤
x
∧
y
2
+
x
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
90
ltnle
⊢
y
∈
ℝ
∧
x
∈
ℝ
→
y
<
x
↔
¬
x
≤
y
91
28
32
90
syl2anr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
<
x
↔
¬
x
≤
y
92
28
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
y
<
x
→
y
∈
ℝ
93
32
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
y
<
x
→
x
∈
ℝ
94
simpr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
y
<
x
→
y
<
x
95
92
93
94
ltled
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
y
<
x
→
y
≤
x
96
95
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
<
x
→
y
≤
x
97
91
96
sylbird
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
¬
x
≤
y
→
y
≤
x
98
97
imp
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
y
≤
x
99
29
recnd
⊢
y
∈
ℕ
0
→
y
2
∈
ℂ
100
99
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
2
∈
ℂ
101
33
recnd
⊢
x
∈
ℕ
0
→
x
2
∈
ℂ
102
101
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
x
2
∈
ℂ
103
100
102
addcomd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
2
+
x
2
=
x
2
+
y
2
104
103
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
y
2
+
x
2
=
x
2
+
y
2
105
34
recnd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
x
2
∈
ℂ
106
105
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
x
2
∈
ℂ
107
30
recnd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
y
2
∈
ℂ
108
107
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
∈
ℂ
109
106
108
addcomd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
x
2
+
y
2
=
y
2
+
x
2
110
109
eqeq2d
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
+
c
2
=
x
2
+
y
2
↔
y
2
+
c
2
=
y
2
+
x
2
111
26
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
c
2
∈
ℝ
112
33
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
x
2
∈
ℝ
113
29
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
∈
ℝ
114
readdcan
⊢
c
2
∈
ℝ
∧
x
2
∈
ℝ
∧
y
2
∈
ℝ
→
y
2
+
c
2
=
y
2
+
x
2
↔
c
2
=
x
2
115
111
112
113
114
syl3anc
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
+
c
2
=
y
2
+
x
2
↔
c
2
=
x
2
116
110
115
bitrd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
+
c
2
=
x
2
+
y
2
↔
c
2
=
x
2
117
25
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
c
∈
ℝ
118
32
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
x
∈
ℝ
119
118
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
x
∈
ℝ
120
42
ad2antlr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
0
≤
c
121
nn0ge0
⊢
x
∈
ℕ
0
→
0
≤
x
122
121
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
0
≤
x
123
122
ad2antrr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
0
≤
x
124
simpr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
c
2
=
x
2
125
117
119
120
123
124
sq11d
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
c
=
x
126
125
eqcomd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
∧
c
2
=
x
2
→
x
=
c
127
126
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
c
2
=
x
2
→
x
=
c
128
116
127
sylbid
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
129
128
adantld
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
c
∈
ℕ
0
→
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
130
129
ralrimiva
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
131
130
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
132
98
104
131
jca31
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
y
≤
x
∧
y
2
+
x
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
x
=
c
133
79
89
132
rspcedvd
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
∃
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
134
breq2
⊢
b
=
c
→
y
≤
b
↔
y
≤
c
135
54
oveq2d
⊢
b
=
c
→
y
2
+
b
2
=
y
2
+
c
2
136
135
eqeq1d
⊢
b
=
c
→
y
2
+
b
2
=
x
2
+
y
2
↔
y
2
+
c
2
=
x
2
+
y
2
137
134
136
anbi12d
⊢
b
=
c
→
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
↔
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
138
137
reu8
⊢
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
↔
∃
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
∧
∀
c
∈
ℕ
0
y
≤
c
∧
y
2
+
c
2
=
x
2
+
y
2
→
b
=
c
139
133
138
sylibr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
¬
x
≤
y
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
140
139
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
¬
x
≤
y
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
141
140
adantr
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
¬
x
≤
y
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
142
141
impcom
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
143
eqeq2
⊢
P
=
x
2
+
y
2
→
y
2
+
b
2
=
P
↔
y
2
+
b
2
=
x
2
+
y
2
144
143
anbi2d
⊢
P
=
x
2
+
y
2
→
y
≤
b
∧
y
2
+
b
2
=
P
↔
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
145
144
reubidv
⊢
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
146
145
adantl
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
147
146
adantl
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
↔
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
x
2
+
y
2
148
142
147
mpbird
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃!
b
∈
ℕ
0
y
≤
b
∧
y
2
+
b
2
=
P
149
71
78
148
rspcedvd
⊢
¬
x
≤
y
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
150
69
149
pm2.61ian
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
∧
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
151
150
ex
⊢
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
152
151
adantl
⊢
P
∈
ℙ
∧
P
mod
4
=
1
∧
x
∈
ℕ
0
∧
y
∈
ℕ
0
→
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
153
152
rexlimdvva
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃
x
∈
ℕ
0
∃
y
∈
ℕ
0
P
=
x
2
+
y
2
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
154
1
153
mpd
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
155
reurex
⊢
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
156
155
a1i
⊢
P
∈
ℙ
∧
P
mod
4
=
1
∧
a
∈
ℕ
0
→
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
157
156
ralrimiva
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∀
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
158
2sqmo
⊢
P
∈
ℙ
→
∃
*
a
∈
ℕ
0
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
159
158
adantr
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃
*
a
∈
ℕ
0
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
160
rmoim
⊢
∀
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
*
a
∈
ℕ
0
∃
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
→
∃
*
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
161
157
159
160
sylc
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃
*
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
162
reu5
⊢
∃!
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
↔
∃
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
∧
∃
*
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P
163
154
161
162
sylanbrc
⊢
P
∈
ℙ
∧
P
mod
4
=
1
→
∃!
a
∈
ℕ
0
∃!
b
∈
ℕ
0
a
≤
b
∧
a
2
+
b
2
=
P