Metamath Proof Explorer


Theorem 2xp3dxp2ge1d

Description: 2x+3 is greater than or equal to x+2 for x >= -1, a deduction version (Contributed by metakunt, 21-Apr-2024)

Ref Expression
Hypothesis 2xp3dxp2ge1d.1 φX1+∞
Assertion 2xp3dxp2ge1d φ12X+3X+2

Proof

Step Hyp Ref Expression
1 2xp3dxp2ge1d.1 φX1+∞
2 neg1rr 1
3 elicopnf 1X1+∞X1X
4 2 3 ax-mp X1+∞X1X
5 1 4 sylib φX1X
6 5 simpld φX
7 2re 2
8 readdcl X2X+2
9 7 8 mpan2 XX+2
10 6 9 syl φX+2
11 neg1cn 1
12 2cn 2
13 addcom 12-1+2=2+-1
14 11 12 13 mp2an -1+2=2+-1
15 ax-1cn 1
16 negsub 212+-1=21
17 12 15 16 mp2an 2+-1=21
18 2m1e1 21=1
19 14 17 18 3eqtri -1+2=1
20 5 simprd φ1X
21 leadd1 1X21X-1+2X+2
22 2 7 21 mp3an13 X1X-1+2X+2
23 6 22 syl φ1X-1+2X+2
24 20 23 mpbid φ-1+2X+2
25 19 24 eqbrtrrid φ1X+2
26 0lt1 0<1
27 25 26 jctil φ0<11X+2
28 0re 0
29 1re 1
30 ltletr 01X+20<11X+20<X+2
31 28 29 30 mp3an12 X+20<11X+20<X+2
32 10 31 syl φ0<11X+20<X+2
33 27 32 mpd φ0<X+2
34 10 33 jca φX+20<X+2
35 elrp X+2+X+20<X+2
36 35 imbi2i φX+2+φX+20<X+2
37 34 36 mpbir φX+2+
38 remulcl 2X2X
39 7 38 mpan X2X
40 6 39 syl φ2X
41 3re 3
42 readdcl 2X32X+3
43 41 42 mpan2 2X2X+3
44 40 43 syl φ2X+3
45 7 a1i φ2
46 1red φ1
47 40 46 readdcld φ2X+1
48 recn XX
49 addrid XX+0=X
50 48 49 syl XX+0=X
51 6 50 syl φX+0=X
52 11 15 addcomi -1+1=1+-1
53 15 negidi 1+-1=0
54 52 53 eqtri -1+1=0
55 leadd1 1X11X-1+1X+1
56 2 29 55 mp3an13 X1X-1+1X+1
57 6 56 syl φ1X-1+1X+1
58 20 57 mpbid φ-1+1X+1
59 54 58 eqbrtrrid φ0X+1
60 readdcl X1X+1
61 29 60 mpan2 XX+1
62 6 61 syl φX+1
63 62 6 jca φX+1X
64 leadd2 0X+1X0X+1X+0X+X+1
65 28 64 mp3an1 X+1X0X+1X+0X+X+1
66 63 65 syl φ0X+1X+0X+X+1
67 59 66 mpbid φX+0X+X+1
68 6 48 syl φX
69 68 2timesd φ2X=X+X
70 69 oveq1d φ2X+1=X+X+1
71 addass XX1X+X+1=X+X+1
72 15 71 mp3an3 XXX+X+1=X+X+1
73 72 anidms XX+X+1=X+X+1
74 68 73 syl φX+X+1=X+X+1
75 70 74 eqtrd φ2X+1=X+X+1
76 67 75 breqtrrd φX+02X+1
77 51 76 eqbrtrrd φX2X+1
78 45 leidd φ22
79 6 45 47 45 77 78 le2addd φX+22X+1+2
80 40 recnd φ2X
81 15 a1i φ1
82 12 a1i φ2
83 80 81 82 addassd φ2X+1+2=2X+1+2
84 1p2e3 1+2=3
85 oveq2 1+2=32X+1+2=2X+3
86 84 85 ax-mp 2X+1+2=2X+3
87 83 86 eqtrdi φ2X+1+2=2X+3
88 79 87 breqtrd φX+22X+3
89 37 44 88 3jca φX+2+2X+3X+22X+3
90 divge1 X+2+2X+3X+22X+312X+3X+2
91 89 90 syl φ12X+3X+2