Metamath Proof Explorer


Theorem 2zlidl

Description: The even integers are a (left) ideal of the ring of integers. (Contributed by AV, 20-Feb-2020)

Ref Expression
Hypotheses 2zrng.e E=z|xz=2x
2zlidl.u U=LIdealring
Assertion 2zlidl EU

Proof

Step Hyp Ref Expression
1 2zrng.e E=z|xz=2x
2 2zlidl.u U=LIdealring
3 ssrab2 z|xz=2x
4 1 3 eqsstri E
5 1 0even 0E
6 5 ne0ii E
7 eqeq1 z=jz=2xj=2x
8 7 rexbidv z=jxz=2xxj=2x
9 8 1 elrab2 jEjxj=2x
10 eqeq1 z=kz=2xk=2x
11 10 rexbidv z=kxz=2xxk=2x
12 11 1 elrab2 kEkxk=2x
13 9 12 anbi12i jEkEjxj=2xkxk=2x
14 simpl ijxj=2xkxk=2xi
15 simprll ijxj=2xkxk=2xj
16 14 15 zmulcld ijxj=2xkxk=2xij
17 simpl kxk=2xk
18 17 adantl jxj=2xkxk=2xk
19 18 adantl ijxj=2xkxk=2xk
20 16 19 zaddcld ijxj=2xkxk=2xij+k
21 oveq2 x=a2x=2a
22 21 eqeq2d x=aj=2xj=2a
23 22 cbvrexvw xj=2xaj=2a
24 oveq2 x=b2x=2b
25 24 eqeq2d x=bk=2xk=2b
26 25 cbvrexvw xk=2xbk=2b
27 simpr bk=2bkaj=2ajii
28 simprll bk=2bkaj=2aja
29 28 adantr bk=2bkaj=2ajia
30 27 29 zmulcld bk=2bkaj=2ajiia
31 simp-4l bk=2bkaj=2ajib
32 30 31 zaddcld bk=2bkaj=2ajiia+b
33 simpr aj=2aj=2a
34 33 ad2antrl bk=2bkaj=2ajj=2a
35 34 oveq2d bk=2bkaj=2ajij=i2a
36 simpllr bk=2bkaj=2ajk=2b
37 35 36 oveq12d bk=2bkaj=2ajij+k=i2a+2b
38 37 adantr bk=2bkaj=2ajiij+k=i2a+2b
39 oveq2 x=ia+b2x=2ia+b
40 38 39 eqeqan12d bk=2bkaj=2ajix=ia+bij+k=2xi2a+2b=2ia+b
41 zcn ii
42 41 adantl bk=2bkaj=2ajii
43 2cnd bk=2bkaj=2aji2
44 zcn aa
45 44 adantr aj=2aa
46 45 ad2antrl bk=2bkaj=2aja
47 46 adantr bk=2bkaj=2ajia
48 42 43 47 mul12d bk=2bkaj=2ajii2a=2ia
49 48 oveq1d bk=2bkaj=2ajii2a+2b=2ia+2b
50 42 47 mulcld bk=2bkaj=2ajiia
51 zcn bb
52 51 ad4antr bk=2bkaj=2ajib
53 43 50 52 adddid bk=2bkaj=2aji2ia+b=2ia+2b
54 49 53 eqtr4d bk=2bkaj=2ajii2a+2b=2ia+b
55 32 40 54 rspcedvd bk=2bkaj=2ajixij+k=2x
56 55 exp41 bk=2bkaj=2ajixij+k=2x
57 56 rexlimiva bk=2bkaj=2ajixij+k=2x
58 26 57 sylbi xk=2xkaj=2ajixij+k=2x
59 58 impcom kxk=2xaj=2ajixij+k=2x
60 59 expdcom aj=2ajkxk=2xixij+k=2x
61 60 rexlimiva aj=2ajkxk=2xixij+k=2x
62 23 61 sylbi xj=2xjkxk=2xixij+k=2x
63 62 impcom jxj=2xkxk=2xixij+k=2x
64 63 imp jxj=2xkxk=2xixij+k=2x
65 64 impcom ijxj=2xkxk=2xxij+k=2x
66 eqeq1 z=ij+kz=2xij+k=2x
67 66 rexbidv z=ij+kxz=2xxij+k=2x
68 67 1 elrab2 ij+kEij+kxij+k=2x
69 20 65 68 sylanbrc ijxj=2xkxk=2xij+kE
70 13 69 sylan2b ijEkEij+kE
71 70 ralrimivva ijEkEij+kE
72 71 rgen ijEkEij+kE
73 zringbas =Basering
74 zringplusg +=+ring
75 zringmulr ×=ring
76 2 73 74 75 islidl EUEEijEkEij+kE
77 4 6 72 76 mpbir3an EU