| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2zrng.e |  | 
						
							| 2 |  | 2zlidl.u |  | 
						
							| 3 |  | ssrab2 |  | 
						
							| 4 | 1 3 | eqsstri |  | 
						
							| 5 | 1 | 0even |  | 
						
							| 6 | 5 | ne0ii |  | 
						
							| 7 |  | eqeq1 |  | 
						
							| 8 | 7 | rexbidv |  | 
						
							| 9 | 8 1 | elrab2 |  | 
						
							| 10 |  | eqeq1 |  | 
						
							| 11 | 10 | rexbidv |  | 
						
							| 12 | 11 1 | elrab2 |  | 
						
							| 13 | 9 12 | anbi12i |  | 
						
							| 14 |  | simpl |  | 
						
							| 15 |  | simprll |  | 
						
							| 16 | 14 15 | zmulcld |  | 
						
							| 17 |  | simpl |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 16 19 | zaddcld |  | 
						
							| 21 |  | oveq2 |  | 
						
							| 22 | 21 | eqeq2d |  | 
						
							| 23 | 22 | cbvrexvw |  | 
						
							| 24 |  | oveq2 |  | 
						
							| 25 | 24 | eqeq2d |  | 
						
							| 26 | 25 | cbvrexvw |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 |  | simprll |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 27 29 | zmulcld |  | 
						
							| 31 |  | simp-4l |  | 
						
							| 32 | 30 31 | zaddcld |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 | 33 | ad2antrl |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 |  | simpllr |  | 
						
							| 37 | 35 36 | oveq12d |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | oveq2 |  | 
						
							| 40 | 38 39 | eqeqan12d |  | 
						
							| 41 |  | zcn |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 |  | 2cnd |  | 
						
							| 44 |  | zcn |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 | 45 | ad2antrl |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 42 43 47 | mul12d |  | 
						
							| 49 | 48 | oveq1d |  | 
						
							| 50 | 42 47 | mulcld |  | 
						
							| 51 |  | zcn |  | 
						
							| 52 | 51 | ad4antr |  | 
						
							| 53 | 43 50 52 | adddid |  | 
						
							| 54 | 49 53 | eqtr4d |  | 
						
							| 55 | 32 40 54 | rspcedvd |  | 
						
							| 56 | 55 | exp41 |  | 
						
							| 57 | 56 | rexlimiva |  | 
						
							| 58 | 26 57 | sylbi |  | 
						
							| 59 | 58 | impcom |  | 
						
							| 60 | 59 | expdcom |  | 
						
							| 61 | 60 | rexlimiva |  | 
						
							| 62 | 23 61 | sylbi |  | 
						
							| 63 | 62 | impcom |  | 
						
							| 64 | 63 | imp |  | 
						
							| 65 | 64 | impcom |  | 
						
							| 66 |  | eqeq1 |  | 
						
							| 67 | 66 | rexbidv |  | 
						
							| 68 | 67 1 | elrab2 |  | 
						
							| 69 | 20 65 68 | sylanbrc |  | 
						
							| 70 | 13 69 | sylan2b |  | 
						
							| 71 | 70 | ralrimivva |  | 
						
							| 72 | 71 | rgen |  | 
						
							| 73 |  | zringbas |  | 
						
							| 74 |  | zringplusg |  | 
						
							| 75 |  | zringmulr |  | 
						
							| 76 | 2 73 74 75 | islidl |  | 
						
							| 77 | 4 6 72 76 | mpbir3an |  |