Metamath Proof Explorer


Theorem 3lexlogpow2ineq2

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow2ineq2 2 < log 2 3 2 log 2 3 2 < 3

Proof

Step Hyp Ref Expression
1 tru
2 2re 2
3 2 a1i 2
4 3re 3
5 4 a1i 3
6 5 rehalfcld 3 2
7 6 resqcld 3 2 2
8 2pos 0 < 2
9 8 a1i 0 < 2
10 3pos 0 < 3
11 10 a1i 0 < 3
12 1red 1
13 1lt2 1 < 2
14 13 a1i 1 < 2
15 12 14 ltned 1 2
16 15 necomd 2 1
17 3 9 5 11 16 relogbcld log 2 3
18 17 resqcld log 2 3 2
19 2cnd 2
20 4cn 4
21 20 a1i 4
22 0red 0
23 4pos 0 < 4
24 23 a1i 0 < 4
25 22 24 ltned 0 4
26 25 necomd 4 0
27 19 21 26 divcan4d 2 4 4 = 2
28 27 eqcomd 2 = 2 4 4
29 4re 4
30 29 a1i 4
31 3 30 remulcld 2 4
32 9re 9
33 32 a1i 9
34 30 24 elrpd 4 +
35 2cn 2
36 4t2e8 4 2 = 8
37 20 35 36 mulcomli 2 4 = 8
38 37 a1i 2 4 = 8
39 8lt9 8 < 9
40 39 a1i 8 < 9
41 38 40 eqbrtrd 2 4 < 9
42 31 33 34 41 ltdiv1dd 2 4 4 < 9 4
43 28 42 eqbrtrd 2 < 9 4
44 eqid 9 = 9
45 3t3e9 3 3 = 9
46 44 45 eqtr4i 9 = 3 3
47 46 a1i 9 = 3 3
48 eqid 4 = 4
49 2t2e4 2 2 = 4
50 48 49 eqtr4i 4 = 2 2
51 50 a1i 4 = 2 2
52 47 51 oveq12d 9 4 = 3 3 2 2
53 5 recnd 3
54 3 recnd 2
55 9 gt0ne0d 2 0
56 53 54 53 54 55 55 divmuldivd 3 2 3 2 = 3 3 2 2
57 56 eqcomd 3 3 2 2 = 3 2 3 2
58 52 57 eqtrd 9 4 = 3 2 3 2
59 6 recnd 3 2
60 sqval 3 2 3 2 2 = 3 2 3 2
61 60 eqcomd 3 2 3 2 3 2 = 3 2 2
62 59 61 syl 3 2 3 2 = 3 2 2
63 58 62 eqtrd 9 4 = 3 2 2
64 43 63 breqtrd 2 < 3 2 2
65 3lexlogpow2ineq1 3 2 < log 2 3 log 2 3 < 5 3
66 65 a1i 3 2 < log 2 3 log 2 3 < 5 3
67 66 simpld 3 2 < log 2 3
68 2nn 2
69 68 a1i 2
70 3rp 3 +
71 70 a1i 3 +
72 71 rphalfcld 3 2 +
73 5 3 11 9 divgt0d 0 < 3 2
74 22 6 17 73 67 lttrd 0 < log 2 3
75 17 74 elrpd log 2 3 +
76 rpexpmord 2 3 2 + log 2 3 + 3 2 < log 2 3 3 2 2 < log 2 3 2
77 69 72 75 76 syl3anc 3 2 < log 2 3 3 2 2 < log 2 3 2
78 67 77 mpbid 3 2 2 < log 2 3 2
79 3 7 18 64 78 lttrd 2 < log 2 3 2
80 5re 5
81 80 a1i 5
82 22 11 gtned 3 0
83 81 5 82 redivcld 5 3
84 69 nnnn0d 2 0
85 83 84 reexpcld 5 3 2
86 66 simprd log 2 3 < 5 3
87 5nn 5
88 87 a1i 5
89 88 nnrpd 5 +
90 89 71 rpdivcld 5 3 +
91 rpexpmord 2 log 2 3 + 5 3 + log 2 3 < 5 3 log 2 3 2 < 5 3 2
92 69 75 90 91 syl3anc log 2 3 < 5 3 log 2 3 2 < 5 3 2
93 86 92 mpbid log 2 3 2 < 5 3 2
94 83 recnd 5 3
95 94 sqvald 5 3 2 = 5 3 5 3
96 81 recnd 5
97 96 53 96 53 82 82 divmuldivd 5 3 5 3 = 5 5 3 3
98 5t5e25 5 5 = 25
99 98 a1i 5 5 = 25
100 45 a1i 3 3 = 9
101 99 100 oveq12d 5 5 3 3 = 25 9
102 2nn0 2 0
103 5nn0 5 0
104 7nn 7
105 5lt7 5 < 7
106 102 103 104 105 declt 25 < 27
107 9cn 9
108 3cn 3
109 9t3e27 9 3 = 27
110 107 108 109 mulcomli 3 9 = 27
111 106 110 breqtrri 25 < 3 9
112 111 a1i 25 < 3 9
113 102 87 decnncl 25
114 113 a1i 25
115 114 nnred 25
116 9nn 9
117 116 a1i 9
118 117 nnrpd 9 +
119 115 5 118 ltdivmul2d 25 9 < 3 25 < 3 9
120 112 119 mpbird 25 9 < 3
121 101 120 eqbrtrd 5 5 3 3 < 3
122 97 121 eqbrtrd 5 3 5 3 < 3
123 95 122 eqbrtrd 5 3 2 < 3
124 18 85 5 93 123 lttrd log 2 3 2 < 3
125 79 124 jca 2 < log 2 3 2 log 2 3 2 < 3
126 1 125 ax-mp 2 < log 2 3 2 log 2 3 2 < 3