| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ac6sfi.1 |
|
| 2 |
|
raleq |
|
| 3 |
|
feq2 |
|
| 4 |
|
raleq |
|
| 5 |
3 4
|
anbi12d |
|
| 6 |
5
|
exbidv |
|
| 7 |
2 6
|
imbi12d |
|
| 8 |
|
raleq |
|
| 9 |
|
feq2 |
|
| 10 |
|
raleq |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
11
|
exbidv |
|
| 13 |
8 12
|
imbi12d |
|
| 14 |
|
raleq |
|
| 15 |
|
feq2 |
|
| 16 |
|
raleq |
|
| 17 |
15 16
|
anbi12d |
|
| 18 |
17
|
exbidv |
|
| 19 |
|
feq1 |
|
| 20 |
|
fvex |
|
| 21 |
20 1
|
sbcie |
|
| 22 |
|
fveq1 |
|
| 23 |
22
|
sbceq1d |
|
| 24 |
21 23
|
bitr3id |
|
| 25 |
24
|
ralbidv |
|
| 26 |
19 25
|
anbi12d |
|
| 27 |
26
|
cbvexvw |
|
| 28 |
18 27
|
bitrdi |
|
| 29 |
14 28
|
imbi12d |
|
| 30 |
|
raleq |
|
| 31 |
|
feq2 |
|
| 32 |
|
raleq |
|
| 33 |
31 32
|
anbi12d |
|
| 34 |
33
|
exbidv |
|
| 35 |
30 34
|
imbi12d |
|
| 36 |
|
f0 |
|
| 37 |
|
0ex |
|
| 38 |
|
ral0 |
|
| 39 |
38
|
biantru |
|
| 40 |
|
feq1 |
|
| 41 |
39 40
|
bitr3id |
|
| 42 |
37 41
|
spcev |
|
| 43 |
36 42
|
mp1i |
|
| 44 |
|
ssun1 |
|
| 45 |
|
ssralv |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
46
|
imim1i |
|
| 48 |
|
ssun2 |
|
| 49 |
|
ssralv |
|
| 50 |
48 49
|
ax-mp |
|
| 51 |
|
ralsnsg |
|
| 52 |
51
|
elv |
|
| 53 |
|
sbcrex |
|
| 54 |
52 53
|
bitri |
|
| 55 |
50 54
|
sylib |
|
| 56 |
|
nfv |
|
| 57 |
|
nfv |
|
| 58 |
|
nfv |
|
| 59 |
|
nfcv |
|
| 60 |
|
nfsbc1v |
|
| 61 |
59 60
|
nfralw |
|
| 62 |
58 61
|
nfan |
|
| 63 |
62
|
nfex |
|
| 64 |
57 63
|
nfim |
|
| 65 |
|
simprl |
|
| 66 |
|
vex |
|
| 67 |
|
vex |
|
| 68 |
66 67
|
f1osn |
|
| 69 |
|
f1of |
|
| 70 |
68 69
|
mp1i |
|
| 71 |
|
simpl2 |
|
| 72 |
71
|
snssd |
|
| 73 |
70 72
|
fssd |
|
| 74 |
|
simpl1 |
|
| 75 |
|
disjsn |
|
| 76 |
74 75
|
sylibr |
|
| 77 |
65 73 76
|
fun2d |
|
| 78 |
|
simprr |
|
| 79 |
|
eleq1a |
|
| 80 |
79
|
necon3bd |
|
| 81 |
80
|
impcom |
|
| 82 |
|
fvunsn |
|
| 83 |
|
dfsbcq |
|
| 84 |
83 21
|
bitr2di |
|
| 85 |
81 82 84
|
3syl |
|
| 86 |
85
|
ralbidva |
|
| 87 |
74 86
|
syl |
|
| 88 |
78 87
|
mpbid |
|
| 89 |
|
simpl3 |
|
| 90 |
|
ffun |
|
| 91 |
|
ssun2 |
|
| 92 |
|
vsnid |
|
| 93 |
67
|
dmsnop |
|
| 94 |
92 93
|
eleqtrri |
|
| 95 |
|
funssfv |
|
| 96 |
91 94 95
|
mp3an23 |
|
| 97 |
77 90 96
|
3syl |
|
| 98 |
66 67
|
fvsn |
|
| 99 |
97 98
|
eqtr2di |
|
| 100 |
|
ralsnsg |
|
| 101 |
100
|
elv |
|
| 102 |
|
elsni |
|
| 103 |
102
|
fveq2d |
|
| 104 |
103
|
eqeq2d |
|
| 105 |
104
|
biimparc |
|
| 106 |
|
sbceq1a |
|
| 107 |
105 106
|
syl |
|
| 108 |
107
|
ralbidva |
|
| 109 |
101 108
|
bitr3id |
|
| 110 |
99 109
|
syl |
|
| 111 |
89 110
|
mpbid |
|
| 112 |
|
ralun |
|
| 113 |
88 111 112
|
syl2anc |
|
| 114 |
|
vex |
|
| 115 |
|
snex |
|
| 116 |
114 115
|
unex |
|
| 117 |
|
feq1 |
|
| 118 |
|
fveq1 |
|
| 119 |
118
|
sbceq1d |
|
| 120 |
119
|
ralbidv |
|
| 121 |
117 120
|
anbi12d |
|
| 122 |
116 121
|
spcev |
|
| 123 |
77 113 122
|
syl2anc |
|
| 124 |
123
|
ex |
|
| 125 |
124
|
exlimdv |
|
| 126 |
125
|
3exp |
|
| 127 |
56 64 126
|
rexlimd |
|
| 128 |
55 127
|
syl5 |
|
| 129 |
128
|
a2d |
|
| 130 |
47 129
|
syl5 |
|
| 131 |
130
|
adantl |
|
| 132 |
7 13 29 35 43 131
|
findcard2s |
|
| 133 |
132
|
imp |
|