| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brdomi |
|
| 2 |
|
neq0 |
|
| 3 |
|
simpl3 |
|
| 4 |
|
elmapi |
|
| 5 |
4
|
ad2antlr |
|
| 6 |
|
simpll1 |
|
| 7 |
|
f1f1orn |
|
| 8 |
|
f1ocnv |
|
| 9 |
|
f1of |
|
| 10 |
6 7 8 9
|
4syl |
|
| 11 |
10
|
ffvelcdmda |
|
| 12 |
|
simpl2 |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
11 13
|
ifclda |
|
| 15 |
5 14
|
ffvelcdmd |
|
| 16 |
|
eldifsn |
|
| 17 |
|
elpwi |
|
| 18 |
17
|
anim1i |
|
| 19 |
16 18
|
sylbi |
|
| 20 |
15 19
|
syl |
|
| 21 |
20
|
ralrimiva |
|
| 22 |
|
acni2 |
|
| 23 |
3 21 22
|
syl2anc |
|
| 24 |
|
f1dm |
|
| 25 |
|
vex |
|
| 26 |
25
|
dmex |
|
| 27 |
24 26
|
eqeltrrdi |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
|
simpll1 |
|
| 31 |
|
f1f |
|
| 32 |
|
frn |
|
| 33 |
|
ssralv |
|
| 34 |
30 31 32 33
|
4syl |
|
| 35 |
|
iftrue |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
eleq2d |
|
| 38 |
37
|
ralbiia |
|
| 39 |
34 38
|
imbitrdi |
|
| 40 |
|
f1fn |
|
| 41 |
|
fveq2 |
|
| 42 |
|
2fveq3 |
|
| 43 |
41 42
|
eleq12d |
|
| 44 |
43
|
ralrn |
|
| 45 |
30 40 44
|
3syl |
|
| 46 |
39 45
|
sylibd |
|
| 47 |
30 7
|
syl |
|
| 48 |
|
f1ocnvfv1 |
|
| 49 |
47 48
|
sylan |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
eleq2d |
|
| 52 |
51
|
ralbidva |
|
| 53 |
46 52
|
sylibd |
|
| 54 |
53
|
impr |
|
| 55 |
|
acnlem |
|
| 56 |
29 54 55
|
syl2anc |
|
| 57 |
23 56
|
exlimddv |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
|
elex |
|
| 60 |
|
isacn |
|
| 61 |
59 27 60
|
syl2anr |
|
| 62 |
61
|
3adant2 |
|
| 63 |
58 62
|
mpbird |
|
| 64 |
63
|
3exp |
|
| 65 |
64
|
exlimdv |
|
| 66 |
2 65
|
biimtrid |
|
| 67 |
|
acneq |
|
| 68 |
|
0fi |
|
| 69 |
|
finacn |
|
| 70 |
68 69
|
ax-mp |
|
| 71 |
67 70
|
eqtrdi |
|
| 72 |
71
|
eleq2d |
|
| 73 |
59 72
|
imbitrrid |
|
| 74 |
66 73
|
pm2.61d2 |
|
| 75 |
74
|
exlimiv |
|
| 76 |
1 75
|
syl |
|