Metamath Proof Explorer


Theorem acndom

Description: A set with long choice sequences also has shorter choice sequences, where "shorter" here means the new index set is dominated by the old index set. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acndom ABXAC_BXAC_A

Proof

Step Hyp Ref Expression
1 brdomi ABff:A1-1B
2 neq0 ¬A=xxA
3 simpl3 f:A1-1BxAXAC_Bg𝒫XAXAC_B
4 elmapi g𝒫XAg:A𝒫X
5 4 ad2antlr f:A1-1BxAXAC_Bg𝒫XAyBg:A𝒫X
6 simpll1 f:A1-1BxAXAC_Bg𝒫XAyBf:A1-1B
7 f1f1orn f:A1-1Bf:A1-1 ontoranf
8 f1ocnv f:A1-1 ontoranff-1:ranf1-1 ontoA
9 f1of f-1:ranf1-1 ontoAf-1:ranfA
10 6 7 8 9 4syl f:A1-1BxAXAC_Bg𝒫XAyBf-1:ranfA
11 10 ffvelcdmda f:A1-1BxAXAC_Bg𝒫XAyByranff-1yA
12 simpl2 f:A1-1BxAXAC_Bg𝒫XAxA
13 12 ad2antrr f:A1-1BxAXAC_Bg𝒫XAyB¬yranfxA
14 11 13 ifclda f:A1-1BxAXAC_Bg𝒫XAyBifyranff-1yxA
15 5 14 ffvelcdmd f:A1-1BxAXAC_Bg𝒫XAyBgifyranff-1yx𝒫X
16 eldifsn gifyranff-1yx𝒫Xgifyranff-1yx𝒫Xgifyranff-1yx
17 elpwi gifyranff-1yx𝒫Xgifyranff-1yxX
18 17 anim1i gifyranff-1yx𝒫Xgifyranff-1yxgifyranff-1yxXgifyranff-1yx
19 16 18 sylbi gifyranff-1yx𝒫Xgifyranff-1yxXgifyranff-1yx
20 15 19 syl f:A1-1BxAXAC_Bg𝒫XAyBgifyranff-1yxXgifyranff-1yx
21 20 ralrimiva f:A1-1BxAXAC_Bg𝒫XAyBgifyranff-1yxXgifyranff-1yx
22 acni2 XAC_ByBgifyranff-1yxXgifyranff-1yxkk:BXyBkygifyranff-1yx
23 3 21 22 syl2anc f:A1-1BxAXAC_Bg𝒫XAkk:BXyBkygifyranff-1yx
24 f1dm f:A1-1Bdomf=A
25 vex fV
26 25 dmex domfV
27 24 26 eqeltrrdi f:A1-1BAV
28 27 3ad2ant1 f:A1-1BxAXAC_BAV
29 28 ad2antrr f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxAV
30 simpll1 f:A1-1BxAXAC_Bg𝒫XAk:BXf:A1-1B
31 f1f f:A1-1Bf:AB
32 frn f:ABranfB
33 ssralv ranfByBkygifyranff-1yxyranfkygifyranff-1yx
34 30 31 32 33 4syl f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxyranfkygifyranff-1yx
35 iftrue yranfifyranff-1yx=f-1y
36 35 fveq2d yranfgifyranff-1yx=gf-1y
37 36 eleq2d yranfkygifyranff-1yxkygf-1y
38 37 ralbiia yranfkygifyranff-1yxyranfkygf-1y
39 34 38 imbitrdi f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxyranfkygf-1y
40 f1fn f:A1-1BfFnA
41 fveq2 y=fzky=kfz
42 2fveq3 y=fzgf-1y=gf-1fz
43 41 42 eleq12d y=fzkygf-1ykfzgf-1fz
44 43 ralrn fFnAyranfkygf-1yzAkfzgf-1fz
45 30 40 44 3syl f:A1-1BxAXAC_Bg𝒫XAk:BXyranfkygf-1yzAkfzgf-1fz
46 39 45 sylibd f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxzAkfzgf-1fz
47 30 7 syl f:A1-1BxAXAC_Bg𝒫XAk:BXf:A1-1 ontoranf
48 f1ocnvfv1 f:A1-1 ontoranfzAf-1fz=z
49 47 48 sylan f:A1-1BxAXAC_Bg𝒫XAk:BXzAf-1fz=z
50 49 fveq2d f:A1-1BxAXAC_Bg𝒫XAk:BXzAgf-1fz=gz
51 50 eleq2d f:A1-1BxAXAC_Bg𝒫XAk:BXzAkfzgf-1fzkfzgz
52 51 ralbidva f:A1-1BxAXAC_Bg𝒫XAk:BXzAkfzgf-1fzzAkfzgz
53 46 52 sylibd f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxzAkfzgz
54 53 impr f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxzAkfzgz
55 acnlem AVzAkfzgzhzAhzgz
56 29 54 55 syl2anc f:A1-1BxAXAC_Bg𝒫XAk:BXyBkygifyranff-1yxhzAhzgz
57 23 56 exlimddv f:A1-1BxAXAC_Bg𝒫XAhzAhzgz
58 57 ralrimiva f:A1-1BxAXAC_Bg𝒫XAhzAhzgz
59 elex XAC_BXV
60 isacn XVAVXAC_Ag𝒫XAhzAhzgz
61 59 27 60 syl2anr f:A1-1BXAC_BXAC_Ag𝒫XAhzAhzgz
62 61 3adant2 f:A1-1BxAXAC_BXAC_Ag𝒫XAhzAhzgz
63 58 62 mpbird f:A1-1BxAXAC_BXAC_A
64 63 3exp f:A1-1BxAXAC_BXAC_A
65 64 exlimdv f:A1-1BxxAXAC_BXAC_A
66 2 65 biimtrid f:A1-1B¬A=XAC_BXAC_A
67 acneq A=AC_A=AC_
68 0fin Fin
69 finacn FinAC_=V
70 68 69 ax-mp AC_=V
71 67 70 eqtrdi A=AC_A=V
72 71 eleq2d A=XAC_AXV
73 59 72 imbitrrid A=XAC_BXAC_A
74 66 73 pm2.61d2 f:A1-1BXAC_BXAC_A
75 74 exlimiv ff:A1-1BXAC_BXAC_A
76 1 75 syl ABXAC_BXAC_A