Metamath Proof Explorer


Theorem acsfn

Description: Algebraicity of a conditional point closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion acsfn XVKXTXTFina𝒫X|TaKaACSX

Proof

Step Hyp Ref Expression
1 funmpt Funb𝒫Xifb=TK
2 funiunfv Funb𝒫Xifb=TKc𝒫aFinb𝒫Xifb=TKc=b𝒫Xifb=TK𝒫aFin
3 1 2 mp1i XVKXTXTFina𝒫Xc𝒫aFinb𝒫Xifb=TKc=b𝒫Xifb=TK𝒫aFin
4 elinel1 c𝒫aFinc𝒫a
5 4 elpwid c𝒫aFinca
6 elpwi a𝒫XaX
7 5 6 sylan9ssr a𝒫Xc𝒫aFincX
8 velpw c𝒫XcX
9 7 8 sylibr a𝒫Xc𝒫aFinc𝒫X
10 9 adantll XVKXTXTFina𝒫Xc𝒫aFinc𝒫X
11 eqeq1 b=cb=Tc=T
12 11 ifbid b=cifb=TK=ifc=TK
13 eqid b𝒫Xifb=TK=b𝒫Xifb=TK
14 snex KV
15 0ex V
16 14 15 ifex ifc=TKV
17 12 13 16 fvmpt c𝒫Xb𝒫Xifb=TKc=ifc=TK
18 10 17 syl XVKXTXTFina𝒫Xc𝒫aFinb𝒫Xifb=TKc=ifc=TK
19 18 iuneq2dv XVKXTXTFina𝒫Xc𝒫aFinb𝒫Xifb=TKc=c𝒫aFinifc=TK
20 3 19 eqtr3d XVKXTXTFina𝒫Xb𝒫Xifb=TK𝒫aFin=c𝒫aFinifc=TK
21 20 sseq1d XVKXTXTFina𝒫Xb𝒫Xifb=TK𝒫aFinac𝒫aFinifc=TKa
22 iunss c𝒫aFinifc=TKac𝒫aFinifc=TKa
23 sseq1 K=ifc=TKKaifc=TKa
24 23 bibi1d K=ifc=TKKac=TKaifc=TKac=TKa
25 sseq1 =ifc=TKaifc=TKa
26 25 bibi1d =ifc=TKac=TKaifc=TKac=TKa
27 snssg KXKaKa
28 27 adantr KXc=TKaKa
29 biimt c=TKac=TKa
30 29 adantl KXc=TKac=TKa
31 28 30 bitr3d KXc=TKac=TKa
32 0ss a
33 32 a1i ¬c=Ta
34 pm2.21 ¬c=Tc=TKa
35 33 34 2thd ¬c=Tac=TKa
36 35 adantl KX¬c=Tac=TKa
37 24 26 31 36 ifbothda KXifc=TKac=TKa
38 37 ralbidv KXc𝒫aFinifc=TKac𝒫aFinc=TKa
39 38 ad3antlr XVKXTXTFina𝒫Xc𝒫aFinifc=TKac𝒫aFinc=TKa
40 22 39 bitrid XVKXTXTFina𝒫Xc𝒫aFinifc=TKac𝒫aFinc=TKa
41 inss1 𝒫aFin𝒫a
42 6 sspwd a𝒫X𝒫a𝒫X
43 41 42 sstrid a𝒫X𝒫aFin𝒫X
44 43 adantl XVKXTXTFina𝒫X𝒫aFin𝒫X
45 ralss 𝒫aFin𝒫Xc𝒫aFinc=TKac𝒫Xc𝒫aFinc=TKa
46 44 45 syl XVKXTXTFina𝒫Xc𝒫aFinc=TKac𝒫Xc𝒫aFinc=TKa
47 bi2.04 c𝒫aFinc=TKac=Tc𝒫aFinKa
48 47 ralbii c𝒫Xc𝒫aFinc=TKac𝒫Xc=Tc𝒫aFinKa
49 elpwg TFinT𝒫XTX
50 49 biimparc TXTFinT𝒫X
51 50 ad2antlr XVKXTXTFina𝒫XT𝒫X
52 eleq1 c=Tc𝒫aFinT𝒫aFin
53 52 imbi1d c=Tc𝒫aFinKaT𝒫aFinKa
54 53 ceqsralv T𝒫Xc𝒫Xc=Tc𝒫aFinKaT𝒫aFinKa
55 51 54 syl XVKXTXTFina𝒫Xc𝒫Xc=Tc𝒫aFinKaT𝒫aFinKa
56 48 55 bitrid XVKXTXTFina𝒫Xc𝒫Xc𝒫aFinc=TKaT𝒫aFinKa
57 simplrr XVKXTXTFina𝒫XTFin
58 57 biantrud XVKXTXTFina𝒫XT𝒫aT𝒫aTFin
59 elin T𝒫aFinT𝒫aTFin
60 58 59 bitr4di XVKXTXTFina𝒫XT𝒫aT𝒫aFin
61 vex aV
62 61 elpw2 T𝒫aTa
63 60 62 bitr3di XVKXTXTFina𝒫XT𝒫aFinTa
64 63 imbi1d XVKXTXTFina𝒫XT𝒫aFinKaTaKa
65 46 56 64 3bitrd XVKXTXTFina𝒫Xc𝒫aFinc=TKaTaKa
66 21 40 65 3bitrrd XVKXTXTFina𝒫XTaKab𝒫Xifb=TK𝒫aFina
67 66 rabbidva XVKXTXTFina𝒫X|TaKa=a𝒫X|b𝒫Xifb=TK𝒫aFina
68 simpll XVKXTXTFinXV
69 snelpwi KXK𝒫X
70 69 ad2antlr XVKXTXTFinK𝒫X
71 0elpw 𝒫X
72 ifcl K𝒫X𝒫Xifb=TK𝒫X
73 70 71 72 sylancl XVKXTXTFinifb=TK𝒫X
74 73 adantr XVKXTXTFinb𝒫Xifb=TK𝒫X
75 74 fmpttd XVKXTXTFinb𝒫Xifb=TK:𝒫X𝒫X
76 isacs1i XVb𝒫Xifb=TK:𝒫X𝒫Xa𝒫X|b𝒫Xifb=TK𝒫aFinaACSX
77 68 75 76 syl2anc XVKXTXTFina𝒫X|b𝒫Xifb=TK𝒫aFinaACSX
78 67 77 eqeltrd XVKXTXTFina𝒫X|TaKaACSX