Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab2 |
|
2 |
1
|
a1i |
|
3 |
|
pweq |
|
4 |
3
|
ineq1d |
|
5 |
4
|
imaeq2d |
|
6 |
5
|
unieqd |
|
7 |
|
id |
|
8 |
6 7
|
sseq12d |
|
9 |
|
inss1 |
|
10 |
|
elpw2g |
|
11 |
9 10
|
mpbiri |
|
12 |
11
|
ad2antrr |
|
13 |
|
imassrn |
|
14 |
|
frn |
|
15 |
14
|
adantl |
|
16 |
13 15
|
sstrid |
|
17 |
16
|
unissd |
|
18 |
|
unipw |
|
19 |
17 18
|
sseqtrdi |
|
20 |
19
|
adantr |
|
21 |
|
inss2 |
|
22 |
|
intss1 |
|
23 |
21 22
|
sstrid |
|
24 |
23
|
adantl |
|
25 |
24
|
sspwd |
|
26 |
25
|
ssrind |
|
27 |
|
imass2 |
|
28 |
26 27
|
syl |
|
29 |
28
|
unissd |
|
30 |
|
ssel2 |
|
31 |
|
pweq |
|
32 |
31
|
ineq1d |
|
33 |
32
|
imaeq2d |
|
34 |
33
|
unieqd |
|
35 |
|
id |
|
36 |
34 35
|
sseq12d |
|
37 |
36
|
elrab |
|
38 |
37
|
simprbi |
|
39 |
30 38
|
syl |
|
40 |
39
|
adantll |
|
41 |
29 40
|
sstrd |
|
42 |
41
|
ralrimiva |
|
43 |
|
ssint |
|
44 |
42 43
|
sylibr |
|
45 |
20 44
|
ssind |
|
46 |
8 12 45
|
elrabd |
|
47 |
2 46
|
ismred2 |
|
48 |
|
fssxp |
|
49 |
|
pwexg |
|
50 |
49 49
|
xpexd |
|
51 |
|
ssexg |
|
52 |
48 50 51
|
syl2anr |
|
53 |
|
simpr |
|
54 |
|
pweq |
|
55 |
54
|
ineq1d |
|
56 |
55
|
imaeq2d |
|
57 |
56
|
unieqd |
|
58 |
|
id |
|
59 |
57 58
|
sseq12d |
|
60 |
59
|
elrab3 |
|
61 |
60
|
rgen |
|
62 |
53 61
|
jctir |
|
63 |
|
feq1 |
|
64 |
|
imaeq1 |
|
65 |
64
|
unieqd |
|
66 |
65
|
sseq1d |
|
67 |
66
|
bibi2d |
|
68 |
67
|
ralbidv |
|
69 |
63 68
|
anbi12d |
|
70 |
52 62 69
|
spcedv |
|
71 |
|
isacs |
|
72 |
47 70 71
|
sylanbrc |
|