| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
|
| 2 |
1
|
a1i |
|
| 3 |
|
pweq |
|
| 4 |
3
|
ineq1d |
|
| 5 |
4
|
imaeq2d |
|
| 6 |
5
|
unieqd |
|
| 7 |
|
id |
|
| 8 |
6 7
|
sseq12d |
|
| 9 |
|
inss1 |
|
| 10 |
|
elpw2g |
|
| 11 |
9 10
|
mpbiri |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
imassrn |
|
| 14 |
|
frn |
|
| 15 |
14
|
adantl |
|
| 16 |
13 15
|
sstrid |
|
| 17 |
16
|
unissd |
|
| 18 |
|
unipw |
|
| 19 |
17 18
|
sseqtrdi |
|
| 20 |
19
|
adantr |
|
| 21 |
|
inss2 |
|
| 22 |
|
intss1 |
|
| 23 |
21 22
|
sstrid |
|
| 24 |
23
|
adantl |
|
| 25 |
24
|
sspwd |
|
| 26 |
25
|
ssrind |
|
| 27 |
|
imass2 |
|
| 28 |
26 27
|
syl |
|
| 29 |
28
|
unissd |
|
| 30 |
|
ssel2 |
|
| 31 |
|
pweq |
|
| 32 |
31
|
ineq1d |
|
| 33 |
32
|
imaeq2d |
|
| 34 |
33
|
unieqd |
|
| 35 |
|
id |
|
| 36 |
34 35
|
sseq12d |
|
| 37 |
36
|
elrab |
|
| 38 |
37
|
simprbi |
|
| 39 |
30 38
|
syl |
|
| 40 |
39
|
adantll |
|
| 41 |
29 40
|
sstrd |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
|
ssint |
|
| 44 |
42 43
|
sylibr |
|
| 45 |
20 44
|
ssind |
|
| 46 |
8 12 45
|
elrabd |
|
| 47 |
2 46
|
ismred2 |
|
| 48 |
|
fssxp |
|
| 49 |
|
pwexg |
|
| 50 |
49 49
|
xpexd |
|
| 51 |
|
ssexg |
|
| 52 |
48 50 51
|
syl2anr |
|
| 53 |
|
simpr |
|
| 54 |
|
pweq |
|
| 55 |
54
|
ineq1d |
|
| 56 |
55
|
imaeq2d |
|
| 57 |
56
|
unieqd |
|
| 58 |
|
id |
|
| 59 |
57 58
|
sseq12d |
|
| 60 |
59
|
elrab3 |
|
| 61 |
60
|
rgen |
|
| 62 |
53 61
|
jctir |
|
| 63 |
|
feq1 |
|
| 64 |
|
imaeq1 |
|
| 65 |
64
|
unieqd |
|
| 66 |
65
|
sseq1d |
|
| 67 |
66
|
bibi2d |
|
| 68 |
67
|
ralbidv |
|
| 69 |
63 68
|
anbi12d |
|
| 70 |
52 62 69
|
spcedv |
|
| 71 |
|
isacs |
|
| 72 |
47 70 71
|
sylanbrc |
|