Description: Biconditional form of the Alexander Subbase Theorem alexsub . (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | alexsubb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | iscmp | |
3 | 2 | simprbi | |
4 | simpr | |
|
5 | elex | |
|
6 | 5 | adantr | |
7 | 4 6 | eqeltrrd | |
8 | uniexb | |
|
9 | 7 8 | sylibr | |
10 | fiuni | |
|
11 | 9 10 | syl | |
12 | fibas | |
|
13 | unitg | |
|
14 | 12 13 | mp1i | |
15 | 11 4 14 | 3eqtr4d | |
16 | 15 | eqeq1d | |
17 | 15 | eqeq1d | |
18 | 17 | rexbidv | |
19 | 16 18 | imbi12d | |
20 | 19 | ralbidv | |
21 | ssfii | |
|
22 | 9 21 | syl | |
23 | bastg | |
|
24 | 12 23 | ax-mp | |
25 | 22 24 | sstrdi | |
26 | 25 | sspwd | |
27 | ssralv | |
|
28 | 26 27 | syl | |
29 | 20 28 | sylbird | |
30 | 3 29 | syl5 | |
31 | simpll | |
|
32 | simplr | |
|
33 | eqidd | |
|
34 | velpw | |
|
35 | unieq | |
|
36 | 35 | eqeq2d | |
37 | pweq | |
|
38 | 37 | ineq1d | |
39 | 38 | rexeqdv | |
40 | 36 39 | imbi12d | |
41 | 40 | rspccv | |
42 | 41 | adantl | |
43 | 34 42 | biimtrrid | |
44 | 43 | imp32 | |
45 | unieq | |
|
46 | 45 | eqeq2d | |
47 | 46 | cbvrexvw | |
48 | 44 47 | sylib | |
49 | 31 32 33 48 | alexsub | |
50 | 49 | ex | |
51 | 30 50 | impbid | |