Metamath Proof Explorer


Theorem atomli

Description: An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of PtakPulmannova p. 66. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypothesis atoml.1 A C
Assertion atomli B HAtoms A B A HAtoms 0

Proof

Step Hyp Ref Expression
1 atoml.1 A C
2 atelch B HAtoms B C
3 chjcl A C B C A B C
4 1 2 3 sylancr B HAtoms A B C
5 1 choccli A C
6 chincl A B C A C A B A C
7 4 5 6 sylancl B HAtoms A B A C
8 hatomic A B A C A B A 0 x HAtoms x A B A
9 7 8 sylan B HAtoms A B A 0 x HAtoms x A B A
10 atelch x HAtoms x C
11 inss2 A B A A
12 sstr x A B A A B A A x A
13 11 12 mpan2 x A B A x A
14 1 pjococi A = A
15 14 oveq1i A x = A x
16 15 ineq1i A x A = A x A
17 incom A x A = A A x
18 16 17 eqtr3i A x A = A A x
19 pjoml3 A C x C x A A A x = x
20 5 19 mpan x C x A A A x = x
21 20 imp x C x A A A x = x
22 18 21 eqtrid x C x A A x A = x
23 10 13 22 syl2an x HAtoms x A B A A x A = x
24 23 ad2ant2lr B HAtoms x HAtoms x A B A A B A 0 A x A = x
25 inss1 A B A A B
26 sstr x A B A A B A A B x A B
27 25 26 mpan2 x A B A x A B
28 chub1 A C B C A A B
29 1 28 mpan B C A A B
30 29 adantr B C x C A A B
31 1 3 mpan B C A B C
32 chlub A C x C A B C A A B x A B A x A B
33 1 32 mp3an1 x C A B C A A B x A B A x A B
34 31 33 sylan2 x C B C A A B x A B A x A B
35 34 biimpd x C B C A A B x A B A x A B
36 35 ancoms B C x C A A B x A B A x A B
37 30 36 mpand B C x C x A B A x A B
38 2 10 37 syl2an B HAtoms x HAtoms x A B A x A B
39 38 imp B HAtoms x HAtoms x A B A x A B
40 27 39 sylan2 B HAtoms x HAtoms x A B A A x A B
41 40 adantrr B HAtoms x HAtoms x A B A A B A 0 A x A B
42 chjcl A C x C A x C
43 1 10 42 sylancr x HAtoms A x C
44 2 43 anim12i B HAtoms x HAtoms B C A x C
45 44 adantr B HAtoms x HAtoms x A B A A B A 0 B C A x C
46 chub1 A C x C A A x
47 1 10 46 sylancr x HAtoms A A x
48 47 ad2antlr B HAtoms x HAtoms x A B A A B A 0 A A x
49 pm3.22 B HAtoms x HAtoms x HAtoms B HAtoms
50 49 adantr B HAtoms x HAtoms x A B A A B A 0 x HAtoms B HAtoms
51 27 adantl x HAtoms x A B A x A B
52 incom A x = x A
53 chsh x C x S
54 1 chshii A S
55 orthin x S A S x A x A = 0
56 53 54 55 sylancl x C x A x A = 0
57 56 imp x C x A x A = 0
58 52 57 eqtrid x C x A A x = 0
59 10 13 58 syl2an x HAtoms x A B A A x = 0
60 51 59 jca x HAtoms x A B A x A B A x = 0
61 60 ad2ant2lr B HAtoms x HAtoms x A B A A B A 0 x A B A x = 0
62 atexch A C x HAtoms B HAtoms x A B A x = 0 B A x
63 1 62 mp3an1 x HAtoms B HAtoms x A B A x = 0 B A x
64 50 61 63 sylc B HAtoms x HAtoms x A B A A B A 0 B A x
65 chlub A C B C A x C A A x B A x A B A x
66 1 65 mp3an1 B C A x C A A x B A x A B A x
67 66 biimpd B C A x C A A x B A x A B A x
68 67 expd B C A x C A A x B A x A B A x
69 45 48 64 68 syl3c B HAtoms x HAtoms x A B A A B A 0 A B A x
70 41 69 eqssd B HAtoms x HAtoms x A B A A B A 0 A x = A B
71 70 ineq1d B HAtoms x HAtoms x A B A A B A 0 A x A = A B A
72 24 71 eqtr3d B HAtoms x HAtoms x A B A A B A 0 x = A B A
73 72 eleq1d B HAtoms x HAtoms x A B A A B A 0 x HAtoms A B A HAtoms
74 73 exp43 B HAtoms x HAtoms x A B A A B A 0 x HAtoms A B A HAtoms
75 74 com24 B HAtoms A B A 0 x A B A x HAtoms x HAtoms A B A HAtoms
76 75 imp31 B HAtoms A B A 0 x A B A x HAtoms x HAtoms A B A HAtoms
77 76 ibd B HAtoms A B A 0 x A B A x HAtoms A B A HAtoms
78 77 ex B HAtoms A B A 0 x A B A x HAtoms A B A HAtoms
79 78 com23 B HAtoms A B A 0 x HAtoms x A B A A B A HAtoms
80 79 rexlimdv B HAtoms A B A 0 x HAtoms x A B A A B A HAtoms
81 9 80 mpd B HAtoms A B A 0 A B A HAtoms
82 81 ex B HAtoms A B A 0 A B A HAtoms
83 82 necon1bd B HAtoms ¬ A B A HAtoms A B A = 0
84 83 orrd B HAtoms A B A HAtoms A B A = 0
85 elun A B A HAtoms 0 A B A HAtoms A B A 0
86 fvex A V
87 86 inex2 A B A V
88 87 elsn A B A 0 A B A = 0
89 88 orbi2i A B A HAtoms A B A 0 A B A HAtoms A B A = 0
90 85 89 bitri A B A HAtoms 0 A B A HAtoms A B A = 0
91 84 90 sylibr B HAtoms A B A HAtoms 0