Metamath Proof Explorer


Theorem axlowdimlem15

Description: Lemma for axlowdim . Set up a one-to-one function of points. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem15.1 F=i1N1ifi=1311N3×0i+111Ni+1×0
Assertion axlowdimlem15 N3F:1N11-1𝔼N

Proof

Step Hyp Ref Expression
1 axlowdimlem15.1 F=i1N1ifi=1311N3×0i+111Ni+1×0
2 eqid 311N3×0=311N3×0
3 2 axlowdimlem7 N3311N3×0𝔼N
4 3 adantr N3i1N1311N3×0𝔼N
5 eluzge3nn N3N
6 eqid i+111Ni+1×0=i+111Ni+1×0
7 6 axlowdimlem10 Ni1N1i+111Ni+1×0𝔼N
8 5 7 sylan N3i1N1i+111Ni+1×0𝔼N
9 4 8 ifcld N3i1N1ifi=1311N3×0i+111Ni+1×0𝔼N
10 9 1 fmptd N3F:1N1𝔼N
11 eqeq1 i=ji=1j=1
12 oveq1 i=ji+1=j+1
13 12 opeq1d i=ji+11=j+11
14 13 sneqd i=ji+11=j+11
15 12 sneqd i=ji+1=j+1
16 15 difeq2d i=j1Ni+1=1Nj+1
17 16 xpeq1d i=j1Ni+1×0=1Nj+1×0
18 14 17 uneq12d i=ji+111Ni+1×0=j+111Nj+1×0
19 11 18 ifbieq2d i=jifi=1311N3×0i+111Ni+1×0=ifj=1311N3×0j+111Nj+1×0
20 snex 31V
21 ovex 1NV
22 21 difexi 1N3V
23 snex 0V
24 22 23 xpex 1N3×0V
25 20 24 unex 311N3×0V
26 snex j+11V
27 21 difexi 1Nj+1V
28 27 23 xpex 1Nj+1×0V
29 26 28 unex j+111Nj+1×0V
30 25 29 ifex ifj=1311N3×0j+111Nj+1×0V
31 19 1 30 fvmpt j1N1Fj=ifj=1311N3×0j+111Nj+1×0
32 eqeq1 i=ki=1k=1
33 oveq1 i=ki+1=k+1
34 33 opeq1d i=ki+11=k+11
35 34 sneqd i=ki+11=k+11
36 33 sneqd i=ki+1=k+1
37 36 difeq2d i=k1Ni+1=1Nk+1
38 37 xpeq1d i=k1Ni+1×0=1Nk+1×0
39 35 38 uneq12d i=ki+111Ni+1×0=k+111Nk+1×0
40 32 39 ifbieq2d i=kifi=1311N3×0i+111Ni+1×0=ifk=1311N3×0k+111Nk+1×0
41 snex k+11V
42 21 difexi 1Nk+1V
43 42 23 xpex 1Nk+1×0V
44 41 43 unex k+111Nk+1×0V
45 25 44 ifex ifk=1311N3×0k+111Nk+1×0V
46 40 1 45 fvmpt k1N1Fk=ifk=1311N3×0k+111Nk+1×0
47 31 46 eqeqan12d j1N1k1N1Fj=Fkifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0
48 47 adantl N3j1N1k1N1Fj=Fkifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0
49 eqtr3 j=1k=1j=k
50 49 2a1d j=1k=1N3j1N1k1N1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k
51 eqid k+111Nk+1×0=k+111Nk+1×0
52 2 51 axlowdimlem13 Nk1N1311N3×0k+111Nk+1×0
53 52 neneqd Nk1N1¬311N3×0=k+111Nk+1×0
54 53 pm2.21d Nk1N1311N3×0=k+111Nk+1×0j=k
55 54 adantrl Nj1N1k1N1311N3×0=k+111Nk+1×0j=k
56 5 55 sylan N3j1N1k1N1311N3×0=k+111Nk+1×0j=k
57 iftrue j=1ifj=1311N3×0j+111Nj+1×0=311N3×0
58 iffalse ¬k=1ifk=1311N3×0k+111Nk+1×0=k+111Nk+1×0
59 57 58 eqeqan12d j=1¬k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0311N3×0=k+111Nk+1×0
60 59 imbi1d j=1¬k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k311N3×0=k+111Nk+1×0j=k
61 56 60 imbitrrid j=1¬k=1N3j1N1k1N1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k
62 eqid j+111Nj+1×0=j+111Nj+1×0
63 2 62 axlowdimlem13 Nj1N1311N3×0j+111Nj+1×0
64 63 necomd Nj1N1j+111Nj+1×0311N3×0
65 64 neneqd Nj1N1¬j+111Nj+1×0=311N3×0
66 65 pm2.21d Nj1N1j+111Nj+1×0=311N3×0j=k
67 5 66 sylan N3j1N1j+111Nj+1×0=311N3×0j=k
68 67 adantrr N3j1N1k1N1j+111Nj+1×0=311N3×0j=k
69 iffalse ¬j=1ifj=1311N3×0j+111Nj+1×0=j+111Nj+1×0
70 iftrue k=1ifk=1311N3×0k+111Nk+1×0=311N3×0
71 69 70 eqeqan12d ¬j=1k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j+111Nj+1×0=311N3×0
72 71 imbi1d ¬j=1k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=kj+111Nj+1×0=311N3×0j=k
73 68 72 imbitrrid ¬j=1k=1N3j1N1k1N1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k
74 62 51 axlowdimlem14 Nj1N1k1N1j+111Nj+1×0=k+111Nk+1×0j=k
75 74 3expb Nj1N1k1N1j+111Nj+1×0=k+111Nk+1×0j=k
76 5 75 sylan N3j1N1k1N1j+111Nj+1×0=k+111Nk+1×0j=k
77 69 58 eqeqan12d ¬j=1¬k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j+111Nj+1×0=k+111Nk+1×0
78 77 imbi1d ¬j=1¬k=1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=kj+111Nj+1×0=k+111Nk+1×0j=k
79 76 78 imbitrrid ¬j=1¬k=1N3j1N1k1N1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k
80 50 61 73 79 4cases N3j1N1k1N1ifj=1311N3×0j+111Nj+1×0=ifk=1311N3×0k+111Nk+1×0j=k
81 48 80 sylbid N3j1N1k1N1Fj=Fkj=k
82 81 ralrimivva N3j1N1k1N1Fj=Fkj=k
83 dff13 F:1N11-1𝔼NF:1N1𝔼Nj1N1k1N1Fj=Fkj=k
84 10 82 83 sylanbrc N3F:1N11-1𝔼N