Metamath Proof Explorer


Theorem ballotlem4

Description: If the first pick is a vote for B, A is not ahead throughout the count. (Contributed by Thierry Arnoux, 25-Nov-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
Assertion ballotlem4 CO¬1C¬CE

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 nnaddcl MNM+N
8 1 2 7 mp2an M+N
9 elnnuz M+NM+N1
10 8 9 mpbi M+N1
11 eluzfz1 M+N111M+N
12 10 11 ax-mp 11M+N
13 0le1 01
14 0re 0
15 1re 1
16 14 15 lenlti 01¬1<0
17 13 16 mpbi ¬1<0
18 ltsub13 0010<011<00
19 14 14 15 18 mp3an 0<011<00
20 0m0e0 00=0
21 20 breq2i 1<001<0
22 19 21 bitri 0<011<0
23 17 22 mtbir ¬0<01
24 1m1e0 11=0
25 24 fveq2i FC11=FC0
26 1 2 3 4 5 ballotlemfval0 COFC0=0
27 25 26 eqtrid COFC11=0
28 27 oveq1d COFC111=01
29 28 breq2d CO0<FC1110<01
30 23 29 mtbiri CO¬0<FC111
31 30 adantr CO¬1C¬0<FC111
32 simpl CO11M+NCO
33 1nn 1
34 33 a1i CO11M+N1
35 1 2 3 4 5 32 34 ballotlemfp1 CO11M+N¬1CFC1=FC1111CFC1=FC11+1
36 35 simpld CO11M+N¬1CFC1=FC111
37 12 36 mpan2 CO¬1CFC1=FC111
38 37 imp CO¬1CFC1=FC111
39 38 breq2d CO¬1C0<FC10<FC111
40 31 39 mtbird CO¬1C¬0<FC1
41 fveq2 i=1FCi=FC1
42 41 breq2d i=10<FCi0<FC1
43 42 notbid i=1¬0<FCi¬0<FC1
44 43 rspcev 11M+N¬0<FC1i1M+N¬0<FCi
45 12 40 44 sylancr CO¬1Ci1M+N¬0<FCi
46 rexnal i1M+N¬0<FCi¬i1M+N0<FCi
47 45 46 sylib CO¬1C¬i1M+N0<FCi
48 1 2 3 4 5 6 ballotleme CECOi1M+N0<FCi
49 48 simprbi CEi1M+N0<FCi
50 47 49 nsyl CO¬1C¬CE
51 50 ex CO¬1C¬CE