Metamath Proof Explorer


Theorem ballotlemirc

Description: Applying R does not change first ties. (Contributed by Thierry Arnoux, 19-Apr-2017) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemirc COEIRC=IC

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrc COERCOE
12 1 2 3 4 5 6 7 8 ballotlemi RCOEIRC=supk1M+N|FRCk=0<
13 11 12 syl COEIRC=supk1M+N|FRCk=0<
14 ltso <Or
15 14 a1i COE<Or
16 1 2 3 4 5 6 7 8 ballotlemiex COEIC1M+NFCIC=0
17 16 simpld COEIC1M+N
18 17 elfzelzd COEIC
19 18 zred COEIC
20 eqid uFin,vFinvuvu=uFin,vFinvuvu
21 1 2 3 4 5 6 7 8 9 10 20 ballotlemfrci COEFRCIC=0
22 fveqeq2 k=ICFRCk=0FRCIC=0
23 22 elrab ICk1M+N|FRCk=0IC1M+NFRCIC=0
24 17 21 23 sylanbrc COEICk1M+N|FRCk=0
25 elrabi yk1M+N|FRCk=0y1M+N
26 25 anim2i COEyk1M+N|FRCk=0COEy1M+N
27 simpr COEy1M+Ny<ICy<IC
28 1 2 3 4 5 6 7 8 9 10 ballotlemfrcn0 COEy1M+Ny<ICFRCy0
29 28 neneqd COEy1M+Ny<IC¬FRCy=0
30 fveqeq2 k=yFRCk=0FRCy=0
31 30 elrab yk1M+N|FRCk=0y1M+NFRCy=0
32 31 simprbi yk1M+N|FRCk=0FRCy=0
33 29 32 nsyl COEy1M+Ny<IC¬yk1M+N|FRCk=0
34 33 3expa COEy1M+Ny<IC¬yk1M+N|FRCk=0
35 27 34 syldan COEy1M+Ny<IC¬yk1M+N|FRCk=0
36 35 ex COEy1M+Ny<IC¬yk1M+N|FRCk=0
37 36 con2d COEy1M+Nyk1M+N|FRCk=0¬y<IC
38 37 imp COEy1M+Nyk1M+N|FRCk=0¬y<IC
39 26 38 sylancom COEyk1M+N|FRCk=0¬y<IC
40 15 19 24 39 infmin COEsupk1M+N|FRCk=0<=IC
41 13 40 eqtrd COEIRC=IC