Metamath Proof Explorer


Theorem brimg

Description: Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Hypotheses brimg.1 A V
brimg.2 B V
brimg.3 C V
Assertion brimg A B 𝖨𝗆𝗀 C C = A B

Proof

Step Hyp Ref Expression
1 brimg.1 A V
2 brimg.2 B V
3 brimg.3 C V
4 df-img 𝖨𝗆𝗀 = 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V 𝖢𝖺𝗋𝗍
5 4 breqi A B 𝖨𝗆𝗀 C A B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V 𝖢𝖺𝗋𝗍 C
6 opex A B V
7 6 3 brco A B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V 𝖢𝖺𝗋𝗍 C a A B 𝖢𝖺𝗋𝗍 a a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
8 vex a V
9 1 2 8 brcart A B 𝖢𝖺𝗋𝗍 a a = A × B
10 9 anbi1i A B 𝖢𝖺𝗋𝗍 a a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C a = A × B a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
11 10 exbii a A B 𝖢𝖺𝗋𝗍 a a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C a a = A × B a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
12 1 2 xpex A × B V
13 breq1 a = A × B a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C A × B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
14 12 13 ceqsexv a a = A × B a 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C A × B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
15 7 11 14 3bitri A B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V 𝖢𝖺𝗋𝗍 C A × B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C
16 12 3 brimage A × B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C C = 2 nd 1 st 1 st V × V A × B
17 19.42v a b B a A a b 2 nd 1 st 1 st V × V x b B a a A a b 2 nd 1 st 1 st V × V x
18 anass p = a b a A b B p 2 nd 1 st 1 st V × V x p = a b a A b B p 2 nd 1 st 1 st V × V x
19 an21 a A b B p 2 nd 1 st 1 st V × V x b B a A p 2 nd 1 st 1 st V × V x
20 19 anbi2i p = a b a A b B p 2 nd 1 st 1 st V × V x p = a b b B a A p 2 nd 1 st 1 st V × V x
21 18 20 bitri p = a b a A b B p 2 nd 1 st 1 st V × V x p = a b b B a A p 2 nd 1 st 1 st V × V x
22 21 2exbii p a p = a b a A b B p 2 nd 1 st 1 st V × V x p a p = a b b B a A p 2 nd 1 st 1 st V × V x
23 excom p a p = a b b B a A p 2 nd 1 st 1 st V × V x a p p = a b b B a A p 2 nd 1 st 1 st V × V x
24 opex a b V
25 breq1 p = a b p 2 nd 1 st 1 st V × V x a b 2 nd 1 st 1 st V × V x
26 25 anbi2d p = a b a A p 2 nd 1 st 1 st V × V x a A a b 2 nd 1 st 1 st V × V x
27 26 anbi2d p = a b b B a A p 2 nd 1 st 1 st V × V x b B a A a b 2 nd 1 st 1 st V × V x
28 24 27 ceqsexv p p = a b b B a A p 2 nd 1 st 1 st V × V x b B a A a b 2 nd 1 st 1 st V × V x
29 28 exbii a p p = a b b B a A p 2 nd 1 st 1 st V × V x a b B a A a b 2 nd 1 st 1 st V × V x
30 22 23 29 3bitri p a p = a b a A b B p 2 nd 1 st 1 st V × V x a b B a A a b 2 nd 1 st 1 st V × V x
31 df-br b A x b x A
32 risset b x A a A a = b x
33 vex b V
34 33 brresi a 1 st V × V b a V × V a 1 st b
35 df-br a 1 st V × V b a b 1 st V × V
36 34 35 bitr3i a V × V a 1 st b a b 1 st V × V
37 36 anbi1i a V × V a 1 st b a b 2 nd 1 st x a b 1 st V × V a b 2 nd 1 st x
38 elvv a V × V p q a = p q
39 38 anbi1i a V × V a 1 st b a b 2 nd 1 st x p q a = p q a 1 st b a b 2 nd 1 st x
40 anass a V × V a 1 st b a b 2 nd 1 st x a V × V a 1 st b a b 2 nd 1 st x
41 ancom a = p q p = b q = x p = b q = x a = p q
42 breq1 a = p q a 1 st b p q 1 st b
43 opeq1 a = p q a b = p q b
44 43 breq1d a = p q a b 2 nd 1 st x p q b 2 nd 1 st x
45 42 44 anbi12d a = p q a 1 st b a b 2 nd 1 st x p q 1 st b p q b 2 nd 1 st x
46 vex p V
47 vex q V
48 46 47 br1steq p q 1 st b b = p
49 equcom b = p p = b
50 48 49 bitri p q 1 st b p = b
51 opex p q b V
52 vex x V
53 51 52 brco p q b 2 nd 1 st x a p q b 1 st a a 2 nd x
54 opex p q V
55 54 33 br1steq p q b 1 st a a = p q
56 55 anbi1i p q b 1 st a a 2 nd x a = p q a 2 nd x
57 56 exbii a p q b 1 st a a 2 nd x a a = p q a 2 nd x
58 53 57 bitri p q b 2 nd 1 st x a a = p q a 2 nd x
59 breq1 a = p q a 2 nd x p q 2 nd x
60 54 59 ceqsexv a a = p q a 2 nd x p q 2 nd x
61 46 47 br2ndeq p q 2 nd x x = q
62 60 61 bitri a a = p q a 2 nd x x = q
63 equcom x = q q = x
64 58 62 63 3bitri p q b 2 nd 1 st x q = x
65 50 64 anbi12i p q 1 st b p q b 2 nd 1 st x p = b q = x
66 45 65 bitrdi a = p q a 1 st b a b 2 nd 1 st x p = b q = x
67 66 pm5.32i a = p q a 1 st b a b 2 nd 1 st x a = p q p = b q = x
68 df-3an p = b q = x a = p q p = b q = x a = p q
69 41 67 68 3bitr4i a = p q a 1 st b a b 2 nd 1 st x p = b q = x a = p q
70 69 2exbii p q a = p q a 1 st b a b 2 nd 1 st x p q p = b q = x a = p q
71 19.41vv p q a = p q a 1 st b a b 2 nd 1 st x p q a = p q a 1 st b a b 2 nd 1 st x
72 opeq1 p = b p q = b q
73 72 eqeq2d p = b a = p q a = b q
74 opeq2 q = x b q = b x
75 74 eqeq2d q = x a = b q a = b x
76 33 52 73 75 ceqsex2v p q p = b q = x a = p q a = b x
77 70 71 76 3bitr3ri a = b x p q a = p q a 1 st b a b 2 nd 1 st x
78 39 40 77 3bitr4ri a = b x a V × V a 1 st b a b 2 nd 1 st x
79 52 brresi a b 2 nd 1 st 1 st V × V x a b 1 st V × V a b 2 nd 1 st x
80 37 78 79 3bitr4i a = b x a b 2 nd 1 st 1 st V × V x
81 80 rexbii a A a = b x a A a b 2 nd 1 st 1 st V × V x
82 32 81 bitri b x A a A a b 2 nd 1 st 1 st V × V x
83 df-rex a A a b 2 nd 1 st 1 st V × V x a a A a b 2 nd 1 st 1 st V × V x
84 31 82 83 3bitri b A x a a A a b 2 nd 1 st 1 st V × V x
85 84 anbi2i b B b A x b B a a A a b 2 nd 1 st 1 st V × V x
86 17 30 85 3bitr4ri b B b A x p a p = a b a A b B p 2 nd 1 st 1 st V × V x
87 86 exbii b b B b A x b p a p = a b a A b B p 2 nd 1 st 1 st V × V x
88 52 elima2 x A B b b B b A x
89 52 elima2 x 2 nd 1 st 1 st V × V A × B p p A × B p 2 nd 1 st 1 st V × V x
90 elxp p A × B a b p = a b a A b B
91 90 anbi1i p A × B p 2 nd 1 st 1 st V × V x a b p = a b a A b B p 2 nd 1 st 1 st V × V x
92 19.41vv a b p = a b a A b B p 2 nd 1 st 1 st V × V x a b p = a b a A b B p 2 nd 1 st 1 st V × V x
93 91 92 bitr4i p A × B p 2 nd 1 st 1 st V × V x a b p = a b a A b B p 2 nd 1 st 1 st V × V x
94 93 exbii p p A × B p 2 nd 1 st 1 st V × V x p a b p = a b a A b B p 2 nd 1 st 1 st V × V x
95 exrot3 p a b p = a b a A b B p 2 nd 1 st 1 st V × V x a b p p = a b a A b B p 2 nd 1 st 1 st V × V x
96 exrot3 a b p p = a b a A b B p 2 nd 1 st 1 st V × V x b p a p = a b a A b B p 2 nd 1 st 1 st V × V x
97 95 96 bitri p a b p = a b a A b B p 2 nd 1 st 1 st V × V x b p a p = a b a A b B p 2 nd 1 st 1 st V × V x
98 89 94 97 3bitri x 2 nd 1 st 1 st V × V A × B b p a p = a b a A b B p 2 nd 1 st 1 st V × V x
99 87 88 98 3bitr4ri x 2 nd 1 st 1 st V × V A × B x A B
100 99 eqriv 2 nd 1 st 1 st V × V A × B = A B
101 100 eqeq2i C = 2 nd 1 st 1 st V × V A × B C = A B
102 16 101 bitri A × B 𝖨𝗆𝖺𝗀𝖾 2 nd 1 st 1 st V × V C C = A B
103 5 15 102 3bitri A B 𝖨𝗆𝗀 C C = A B