| Step |
Hyp |
Ref |
Expression |
| 1 |
|
brimg.1 |
|- A e. _V |
| 2 |
|
brimg.2 |
|- B e. _V |
| 3 |
|
brimg.3 |
|- C e. _V |
| 4 |
|
df-img |
|- Img = ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) |
| 5 |
4
|
breqi |
|- ( <. A , B >. Img C <-> <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C ) |
| 6 |
|
opex |
|- <. A , B >. e. _V |
| 7 |
6 3
|
brco |
|- ( <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C <-> E. a ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 8 |
|
vex |
|- a e. _V |
| 9 |
1 2 8
|
brcart |
|- ( <. A , B >. Cart a <-> a = ( A X. B ) ) |
| 10 |
9
|
anbi1i |
|- ( ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 11 |
10
|
exbii |
|- ( E. a ( <. A , B >. Cart a /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> E. a ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 12 |
1 2
|
xpex |
|- ( A X. B ) e. _V |
| 13 |
|
breq1 |
|- ( a = ( A X. B ) -> ( a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) ) |
| 14 |
12 13
|
ceqsexv |
|- ( E. a ( a = ( A X. B ) /\ a Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) |
| 15 |
7 11 14
|
3bitri |
|- ( <. A , B >. ( Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) o. Cart ) C <-> ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C ) |
| 16 |
12 3
|
brimage |
|- ( ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> C = ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) ) |
| 17 |
|
19.42v |
|- ( E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( b e. B /\ E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 18 |
|
anass |
|- ( ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( p = <. a , b >. /\ ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 19 |
|
an21 |
|- ( ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 20 |
19
|
anbi2i |
|- ( ( p = <. a , b >. /\ ( ( a e. A /\ b e. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 21 |
18 20
|
bitri |
|- ( ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 22 |
21
|
2exbii |
|- ( E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. p E. a ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 23 |
|
excom |
|- ( E. p E. a ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> E. a E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 24 |
|
opex |
|- <. a , b >. e. _V |
| 25 |
|
breq1 |
|- ( p = <. a , b >. -> ( p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 26 |
25
|
anbi2d |
|- ( p = <. a , b >. -> ( ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 27 |
26
|
anbi2d |
|- ( p = <. a , b >. -> ( ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) <-> ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) ) |
| 28 |
24 27
|
ceqsexv |
|- ( E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 29 |
28
|
exbii |
|- ( E. a E. p ( p = <. a , b >. /\ ( b e. B /\ ( a e. A /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) <-> E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 30 |
22 23 29
|
3bitri |
|- ( E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a ( b e. B /\ ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 31 |
|
df-br |
|- ( b A x <-> <. b , x >. e. A ) |
| 32 |
|
risset |
|- ( <. b , x >. e. A <-> E. a e. A a = <. b , x >. ) |
| 33 |
|
vex |
|- b e. _V |
| 34 |
33
|
brresi |
|- ( a ( 1st |` ( _V X. _V ) ) b <-> ( a e. ( _V X. _V ) /\ a 1st b ) ) |
| 35 |
|
df-br |
|- ( a ( 1st |` ( _V X. _V ) ) b <-> <. a , b >. e. ( 1st |` ( _V X. _V ) ) ) |
| 36 |
34 35
|
bitr3i |
|- ( ( a e. ( _V X. _V ) /\ a 1st b ) <-> <. a , b >. e. ( 1st |` ( _V X. _V ) ) ) |
| 37 |
36
|
anbi1i |
|- ( ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( <. a , b >. e. ( 1st |` ( _V X. _V ) ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 38 |
|
elvv |
|- ( a e. ( _V X. _V ) <-> E. p E. q a = <. p , q >. ) |
| 39 |
38
|
anbi1i |
|- ( ( a e. ( _V X. _V ) /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 40 |
|
anass |
|- ( ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( a e. ( _V X. _V ) /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 41 |
|
ancom |
|- ( ( a = <. p , q >. /\ ( p = b /\ q = x ) ) <-> ( ( p = b /\ q = x ) /\ a = <. p , q >. ) ) |
| 42 |
|
breq1 |
|- ( a = <. p , q >. -> ( a 1st b <-> <. p , q >. 1st b ) ) |
| 43 |
|
opeq1 |
|- ( a = <. p , q >. -> <. a , b >. = <. <. p , q >. , b >. ) |
| 44 |
43
|
breq1d |
|- ( a = <. p , q >. -> ( <. a , b >. ( 2nd o. 1st ) x <-> <. <. p , q >. , b >. ( 2nd o. 1st ) x ) ) |
| 45 |
42 44
|
anbi12d |
|- ( a = <. p , q >. -> ( ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( <. p , q >. 1st b /\ <. <. p , q >. , b >. ( 2nd o. 1st ) x ) ) ) |
| 46 |
|
vex |
|- p e. _V |
| 47 |
|
vex |
|- q e. _V |
| 48 |
46 47
|
br1steq |
|- ( <. p , q >. 1st b <-> b = p ) |
| 49 |
|
equcom |
|- ( b = p <-> p = b ) |
| 50 |
48 49
|
bitri |
|- ( <. p , q >. 1st b <-> p = b ) |
| 51 |
|
opex |
|- <. <. p , q >. , b >. e. _V |
| 52 |
|
vex |
|- x e. _V |
| 53 |
51 52
|
brco |
|- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> E. a ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) ) |
| 54 |
|
opex |
|- <. p , q >. e. _V |
| 55 |
54 33
|
br1steq |
|- ( <. <. p , q >. , b >. 1st a <-> a = <. p , q >. ) |
| 56 |
55
|
anbi1i |
|- ( ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) <-> ( a = <. p , q >. /\ a 2nd x ) ) |
| 57 |
56
|
exbii |
|- ( E. a ( <. <. p , q >. , b >. 1st a /\ a 2nd x ) <-> E. a ( a = <. p , q >. /\ a 2nd x ) ) |
| 58 |
53 57
|
bitri |
|- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> E. a ( a = <. p , q >. /\ a 2nd x ) ) |
| 59 |
|
breq1 |
|- ( a = <. p , q >. -> ( a 2nd x <-> <. p , q >. 2nd x ) ) |
| 60 |
54 59
|
ceqsexv |
|- ( E. a ( a = <. p , q >. /\ a 2nd x ) <-> <. p , q >. 2nd x ) |
| 61 |
46 47
|
br2ndeq |
|- ( <. p , q >. 2nd x <-> x = q ) |
| 62 |
60 61
|
bitri |
|- ( E. a ( a = <. p , q >. /\ a 2nd x ) <-> x = q ) |
| 63 |
|
equcom |
|- ( x = q <-> q = x ) |
| 64 |
58 62 63
|
3bitri |
|- ( <. <. p , q >. , b >. ( 2nd o. 1st ) x <-> q = x ) |
| 65 |
50 64
|
anbi12i |
|- ( ( <. p , q >. 1st b /\ <. <. p , q >. , b >. ( 2nd o. 1st ) x ) <-> ( p = b /\ q = x ) ) |
| 66 |
45 65
|
bitrdi |
|- ( a = <. p , q >. -> ( ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) <-> ( p = b /\ q = x ) ) ) |
| 67 |
66
|
pm5.32i |
|- ( ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( a = <. p , q >. /\ ( p = b /\ q = x ) ) ) |
| 68 |
|
df-3an |
|- ( ( p = b /\ q = x /\ a = <. p , q >. ) <-> ( ( p = b /\ q = x ) /\ a = <. p , q >. ) ) |
| 69 |
41 67 68
|
3bitr4i |
|- ( ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( p = b /\ q = x /\ a = <. p , q >. ) ) |
| 70 |
69
|
2exbii |
|- ( E. p E. q ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> E. p E. q ( p = b /\ q = x /\ a = <. p , q >. ) ) |
| 71 |
|
19.41vv |
|- ( E. p E. q ( a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 72 |
|
opeq1 |
|- ( p = b -> <. p , q >. = <. b , q >. ) |
| 73 |
72
|
eqeq2d |
|- ( p = b -> ( a = <. p , q >. <-> a = <. b , q >. ) ) |
| 74 |
|
opeq2 |
|- ( q = x -> <. b , q >. = <. b , x >. ) |
| 75 |
74
|
eqeq2d |
|- ( q = x -> ( a = <. b , q >. <-> a = <. b , x >. ) ) |
| 76 |
33 52 73 75
|
ceqsex2v |
|- ( E. p E. q ( p = b /\ q = x /\ a = <. p , q >. ) <-> a = <. b , x >. ) |
| 77 |
70 71 76
|
3bitr3ri |
|- ( a = <. b , x >. <-> ( E. p E. q a = <. p , q >. /\ ( a 1st b /\ <. a , b >. ( 2nd o. 1st ) x ) ) ) |
| 78 |
39 40 77
|
3bitr4ri |
|- ( a = <. b , x >. <-> ( ( a e. ( _V X. _V ) /\ a 1st b ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 79 |
52
|
brresi |
|- ( <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> ( <. a , b >. e. ( 1st |` ( _V X. _V ) ) /\ <. a , b >. ( 2nd o. 1st ) x ) ) |
| 80 |
37 78 79
|
3bitr4i |
|- ( a = <. b , x >. <-> <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 81 |
80
|
rexbii |
|- ( E. a e. A a = <. b , x >. <-> E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 82 |
32 81
|
bitri |
|- ( <. b , x >. e. A <-> E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) |
| 83 |
|
df-rex |
|- ( E. a e. A <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x <-> E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 84 |
31 82 83
|
3bitri |
|- ( b A x <-> E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 85 |
84
|
anbi2i |
|- ( ( b e. B /\ b A x ) <-> ( b e. B /\ E. a ( a e. A /\ <. a , b >. ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) ) |
| 86 |
17 30 85
|
3bitr4ri |
|- ( ( b e. B /\ b A x ) <-> E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 87 |
86
|
exbii |
|- ( E. b ( b e. B /\ b A x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 88 |
52
|
elima2 |
|- ( x e. ( A " B ) <-> E. b ( b e. B /\ b A x ) ) |
| 89 |
52
|
elima2 |
|- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> E. p ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 90 |
|
elxp |
|- ( p e. ( A X. B ) <-> E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) ) |
| 91 |
90
|
anbi1i |
|- ( ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 92 |
|
19.41vv |
|- ( E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> ( E. a E. b ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 93 |
91 92
|
bitr4i |
|- ( ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 94 |
93
|
exbii |
|- ( E. p ( p e. ( A X. B ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 95 |
|
exrot3 |
|- ( E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. a E. b E. p ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 96 |
|
exrot3 |
|- ( E. a E. b E. p ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 97 |
95 96
|
bitri |
|- ( E. p E. a E. b ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 98 |
89 94 97
|
3bitri |
|- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> E. b E. p E. a ( ( p = <. a , b >. /\ ( a e. A /\ b e. B ) ) /\ p ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) x ) ) |
| 99 |
87 88 98
|
3bitr4ri |
|- ( x e. ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> x e. ( A " B ) ) |
| 100 |
99
|
eqriv |
|- ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) = ( A " B ) |
| 101 |
100
|
eqeq2i |
|- ( C = ( ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) " ( A X. B ) ) <-> C = ( A " B ) ) |
| 102 |
16 101
|
bitri |
|- ( ( A X. B ) Image ( ( 2nd o. 1st ) |` ( 1st |` ( _V X. _V ) ) ) C <-> C = ( A " B ) ) |
| 103 |
5 15 102
|
3bitri |
|- ( <. A , B >. Img C <-> C = ( A " B ) ) |