Metamath Proof Explorer


Theorem c0rnghm

Description: The constant mapping to zero is a nonunital ring homomorphism from any nonunital ring to the zero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0mhm.b B = Base S
c0mhm.0 0 ˙ = 0 T
c0mhm.h H = x B 0 ˙
Assertion c0rnghm S Rng T Ring NzRing H S RngHomo T

Proof

Step Hyp Ref Expression
1 c0mhm.b B = Base S
2 c0mhm.0 0 ˙ = 0 T
3 c0mhm.h H = x B 0 ˙
4 ringssrng Ring Rng
5 4 a1i S Rng Ring Rng
6 5 ssdifssd S Rng Ring NzRing Rng
7 6 sseld S Rng T Ring NzRing T Rng
8 7 imdistani S Rng T Ring NzRing S Rng T Rng
9 rngabl S Rng S Abel
10 ablgrp S Abel S Grp
11 9 10 syl S Rng S Grp
12 eldifi T Ring NzRing T Ring
13 ringgrp T Ring T Grp
14 12 13 syl T Ring NzRing T Grp
15 1 2 3 c0ghm S Grp T Grp H S GrpHom T
16 11 14 15 syl2an S Rng T Ring NzRing H S GrpHom T
17 eqid Base T = Base T
18 eqid 1 T = 1 T
19 17 2 18 0ring1eq0 T Ring NzRing 1 T = 0 ˙
20 19 eqcomd T Ring NzRing 0 ˙ = 1 T
21 20 mpteq2dv T Ring NzRing x B 0 ˙ = x B 1 T
22 21 adantl S Rng T Ring NzRing x B 0 ˙ = x B 1 T
23 3 22 syl5eq S Rng T Ring NzRing H = x B 1 T
24 eqid mulGrp S = mulGrp S
25 24 rngmgp Could not format ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) : No typesetting found for |- ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) with typecode |-
26 sgrpmgm Could not format ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) : No typesetting found for |- ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) with typecode |-
27 25 26 syl S Rng mulGrp S Mgm
28 eqid mulGrp T = mulGrp T
29 28 ringmgp T Ring mulGrp T Mnd
30 12 29 syl T Ring NzRing mulGrp T Mnd
31 24 1 mgpbas B = Base mulGrp S
32 28 18 ringidval 1 T = 0 mulGrp T
33 eqid x B 1 T = x B 1 T
34 31 32 33 c0mgm mulGrp S Mgm mulGrp T Mnd x B 1 T mulGrp S MgmHom mulGrp T
35 27 30 34 syl2an S Rng T Ring NzRing x B 1 T mulGrp S MgmHom mulGrp T
36 23 35 eqeltrd S Rng T Ring NzRing H mulGrp S MgmHom mulGrp T
37 16 36 jca S Rng T Ring NzRing H S GrpHom T H mulGrp S MgmHom mulGrp T
38 24 28 isrnghmmul H S RngHomo T S Rng T Rng H S GrpHom T H mulGrp S MgmHom mulGrp T
39 8 37 38 sylanbrc S Rng T Ring NzRing H S RngHomo T