Metamath Proof Explorer


Theorem c0rnghm

Description: The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020)

Ref Expression
Hypotheses c0rhm.b B=BaseS
c0rhm.0 0˙=0T
c0rhm.h H=xB0˙
Assertion c0rnghm SRngTRingNzRingHSRngHomT

Proof

Step Hyp Ref Expression
1 c0rhm.b B=BaseS
2 c0rhm.0 0˙=0T
3 c0rhm.h H=xB0˙
4 ringssrng RingRng
5 4 a1i SRngRingRng
6 5 ssdifssd SRngRingNzRingRng
7 6 sseld SRngTRingNzRingTRng
8 7 imdistani SRngTRingNzRingSRngTRng
9 rngabl SRngSAbel
10 ablgrp SAbelSGrp
11 9 10 syl SRngSGrp
12 eldifi TRingNzRingTRing
13 ringgrp TRingTGrp
14 12 13 syl TRingNzRingTGrp
15 1 2 3 c0ghm SGrpTGrpHSGrpHomT
16 11 14 15 syl2an SRngTRingNzRingHSGrpHomT
17 eqid BaseT=BaseT
18 eqid 1T=1T
19 17 2 18 0ring1eq0 TRingNzRing1T=0˙
20 19 eqcomd TRingNzRing0˙=1T
21 20 mpteq2dv TRingNzRingxB0˙=xB1T
22 21 adantl SRngTRingNzRingxB0˙=xB1T
23 3 22 eqtrid SRngTRingNzRingH=xB1T
24 eqid mulGrpS=mulGrpS
25 24 rngmgp Could not format ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) : No typesetting found for |- ( S e. Rng -> ( mulGrp ` S ) e. Smgrp ) with typecode |-
26 sgrpmgm Could not format ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) : No typesetting found for |- ( ( mulGrp ` S ) e. Smgrp -> ( mulGrp ` S ) e. Mgm ) with typecode |-
27 25 26 syl SRngmulGrpSMgm
28 eqid mulGrpT=mulGrpT
29 28 ringmgp TRingmulGrpTMnd
30 12 29 syl TRingNzRingmulGrpTMnd
31 24 1 mgpbas B=BasemulGrpS
32 28 18 ringidval 1T=0mulGrpT
33 eqid xB1T=xB1T
34 31 32 33 c0mgm mulGrpSMgmmulGrpTMndxB1TmulGrpSMgmHommulGrpT
35 27 30 34 syl2an SRngTRingNzRingxB1TmulGrpSMgmHommulGrpT
36 23 35 eqeltrd SRngTRingNzRingHmulGrpSMgmHommulGrpT
37 16 36 jca SRngTRingNzRingHSGrpHomTHmulGrpSMgmHommulGrpT
38 24 28 isrnghmmul HSRngHomTSRngTRngHSGrpHomTHmulGrpSMgmHommulGrpT
39 8 37 38 sylanbrc SRngTRingNzRingHSRngHomT