Metamath Proof Explorer


Theorem canthwelem

Description: Lemma for canthwe . (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses canthwe.1 O=xr|xArx×xrWex
canthwe.2 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
canthwe.3 B=domW
canthwe.4 C=WB-1BFWB
Assertion canthwelem AV¬F:O1-1A

Proof

Step Hyp Ref Expression
1 canthwe.1 O=xr|xArx×xrWex
2 canthwe.2 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
3 canthwe.3 B=domW
4 canthwe.4 C=WB-1BFWB
5 eqid B=B
6 eqid WB=WB
7 5 6 pm3.2i B=BWB=WB
8 simpl AVF:O1-1AAV
9 df-ov xFr=Fxr
10 f1f F:O1-1AF:OA
11 10 ad2antlr AVF:O1-1AxArx×xrWexF:OA
12 simpr AVF:O1-1AxArx×xrWexxArx×xrWex
13 opabidw xrxr|xArx×xrWexxArx×xrWex
14 12 13 sylibr AVF:O1-1AxArx×xrWexxrxr|xArx×xrWex
15 14 1 eleqtrrdi AVF:O1-1AxArx×xrWexxrO
16 11 15 ffvelcdmd AVF:O1-1AxArx×xrWexFxrA
17 9 16 eqeltrid AVF:O1-1AxArx×xrWexxFrA
18 2 8 17 3 fpwwe2 AVF:O1-1ABWWBBFWBBB=BWB=WB
19 7 18 mpbiri AVF:O1-1ABWWBBFWBB
20 19 simprd AVF:O1-1ABFWBB
21 4 4 xpeq12i C×C=WB-1BFWB×WB-1BFWB
22 21 ineq2i WBC×C=WBWB-1BFWB×WB-1BFWB
23 4 22 oveq12i CFWBC×C=WB-1BFWBFWBWB-1BFWB×WB-1BFWB
24 19 simpld AVF:O1-1ABWWB
25 2 8 24 fpwwe2lem3 AVF:O1-1ABFWBBWB-1BFWBFWBWB-1BFWB×WB-1BFWB=BFWB
26 20 25 mpdan AVF:O1-1AWB-1BFWBFWBWB-1BFWB×WB-1BFWB=BFWB
27 23 26 eqtrid AVF:O1-1ACFWBC×C=BFWB
28 df-ov CFWBC×C=FCWBC×C
29 df-ov BFWB=FBWB
30 27 28 29 3eqtr3g AVF:O1-1AFCWBC×C=FBWB
31 simpr AVF:O1-1AF:O1-1A
32 cnvimass WB-1BFWBdomWB
33 2 8 fpwwe2lem2 AVF:O1-1ABWWBBAWBB×BWBWeByB[˙WB-1y/u]˙uFWBu×u=y
34 24 33 mpbid AVF:O1-1ABAWBB×BWBWeByB[˙WB-1y/u]˙uFWBu×u=y
35 34 simpld AVF:O1-1ABAWBB×B
36 35 simprd AVF:O1-1AWBB×B
37 dmss WBB×BdomWBdomB×B
38 36 37 syl AVF:O1-1AdomWBdomB×B
39 dmxpss domB×BB
40 38 39 sstrdi AVF:O1-1AdomWBB
41 32 40 sstrid AVF:O1-1AWB-1BFWBB
42 4 41 eqsstrid AVF:O1-1ACB
43 35 simpld AVF:O1-1ABA
44 42 43 sstrd AVF:O1-1ACA
45 inss2 WBC×CC×C
46 45 a1i AVF:O1-1AWBC×CC×C
47 34 simprd AVF:O1-1AWBWeByB[˙WB-1y/u]˙uFWBu×u=y
48 47 simpld AVF:O1-1AWBWeB
49 wess CBWBWeBWBWeC
50 42 48 49 sylc AVF:O1-1AWBWeC
51 weinxp WBWeCWBC×CWeC
52 50 51 sylib AVF:O1-1AWBC×CWeC
53 fvex WBV
54 53 cnvex WB-1V
55 54 imaex WB-1BFWBV
56 4 55 eqeltri CV
57 53 inex1 WBC×CV
58 simpl x=Cr=WBC×Cx=C
59 58 sseq1d x=Cr=WBC×CxACA
60 simpr x=Cr=WBC×Cr=WBC×C
61 58 sqxpeqd x=Cr=WBC×Cx×x=C×C
62 60 61 sseq12d x=Cr=WBC×Crx×xWBC×CC×C
63 weeq2 x=CrWexrWeC
64 weeq1 r=WBC×CrWeCWBC×CWeC
65 63 64 sylan9bb x=Cr=WBC×CrWexWBC×CWeC
66 59 62 65 3anbi123d x=Cr=WBC×CxArx×xrWexCAWBC×CC×CWBC×CWeC
67 56 57 66 opelopaba CWBC×Cxr|xArx×xrWexCAWBC×CC×CWBC×CWeC
68 44 46 52 67 syl3anbrc AVF:O1-1ACWBC×Cxr|xArx×xrWex
69 68 1 eleqtrrdi AVF:O1-1ACWBC×CO
70 8 43 ssexd AVF:O1-1ABV
71 53 a1i AVF:O1-1AWBV
72 simpl x=Br=WBx=B
73 72 sseq1d x=Br=WBxABA
74 simpr x=Br=WBr=WB
75 72 sqxpeqd x=Br=WBx×x=B×B
76 74 75 sseq12d x=Br=WBrx×xWBB×B
77 weeq2 x=BrWexrWeB
78 weeq1 r=WBrWeBWBWeB
79 77 78 sylan9bb x=Br=WBrWexWBWeB
80 73 76 79 3anbi123d x=Br=WBxArx×xrWexBAWBB×BWBWeB
81 80 opelopabga BVWBVBWBxr|xArx×xrWexBAWBB×BWBWeB
82 70 71 81 syl2anc AVF:O1-1ABWBxr|xArx×xrWexBAWBB×BWBWeB
83 43 36 48 82 mpbir3and AVF:O1-1ABWBxr|xArx×xrWex
84 83 1 eleqtrrdi AVF:O1-1ABWBO
85 f1fveq F:O1-1ACWBC×COBWBOFCWBC×C=FBWBCWBC×C=BWB
86 31 69 84 85 syl12anc AVF:O1-1AFCWBC×C=FBWBCWBC×C=BWB
87 30 86 mpbid AVF:O1-1ACWBC×C=BWB
88 56 57 opth1 CWBC×C=BWBC=B
89 87 88 syl AVF:O1-1AC=B
90 20 89 eleqtrrd AVF:O1-1ABFWBC
91 90 4 eleqtrdi AVF:O1-1ABFWBWB-1BFWB
92 ovex BFWBV
93 92 eliniseg BFWBBBFWBWB-1BFWBBFWBWBBFWB
94 20 93 syl AVF:O1-1ABFWBWB-1BFWBBFWBWBBFWB
95 91 94 mpbid AVF:O1-1ABFWBWBBFWB
96 weso WBWeBWBOrB
97 48 96 syl AVF:O1-1AWBOrB
98 sonr WBOrBBFWBB¬BFWBWBBFWB
99 97 20 98 syl2anc AVF:O1-1A¬BFWBWBBFWB
100 95 99 pm2.65da AV¬F:O1-1A