Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
The Generalized Continuum Hypothesis
Sets satisfying the Generalized Continuum Hypothesis
canthwelem
Next ⟩
canthwe
Metamath Proof Explorer
Ascii
Unicode
Theorem
canthwelem
Description:
Lemma for
canthwe
.
(Contributed by
Mario Carneiro
, 31-May-2015)
Ref
Expression
Hypotheses
canthwe.1
⊢
O
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
canthwe.2
⊢
W
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
canthwe.3
⊢
B
=
⋃
dom
W
canthwe.4
⊢
C
=
W
B
-1
B
F
W
B
Assertion
canthwelem
⊢
A
∈
V
→
¬
F
:
O
⟶
1-1
A
Proof
Step
Hyp
Ref
Expression
1
canthwe.1
⊢
O
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
2
canthwe.2
⊢
W
=
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
∧
∀
y
∈
x
[
˙
r
-1
y
/
u
]
˙
u
F
r
∩
u
×
u
=
y
3
canthwe.3
⊢
B
=
⋃
dom
W
4
canthwe.4
⊢
C
=
W
B
-1
B
F
W
B
5
eqid
⊢
B
=
B
6
eqid
⊢
W
B
=
W
B
7
5
6
pm3.2i
⊢
B
=
B
∧
W
B
=
W
B
8
simpl
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
A
∈
V
9
df-ov
⊢
x
F
r
=
F
x
r
10
f1f
⊢
F
:
O
⟶
1-1
A
→
F
:
O
⟶
A
11
10
ad2antlr
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
F
:
O
⟶
A
12
simpr
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
13
opabidw
⊢
x
r
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
14
12
13
sylibr
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
x
r
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
15
14
1
eleqtrrdi
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
x
r
∈
O
16
11
15
ffvelcdmd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
F
x
r
∈
A
17
9
16
eqeltrid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
→
x
F
r
∈
A
18
2
8
17
3
fpwwe2
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
W
B
∧
B
F
W
B
∈
B
↔
B
=
B
∧
W
B
=
W
B
19
7
18
mpbiri
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
W
B
∧
B
F
W
B
∈
B
20
19
simprd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
F
W
B
∈
B
21
4
4
xpeq12i
⊢
C
×
C
=
W
B
-1
B
F
W
B
×
W
B
-1
B
F
W
B
22
21
ineq2i
⊢
W
B
∩
C
×
C
=
W
B
∩
W
B
-1
B
F
W
B
×
W
B
-1
B
F
W
B
23
4
22
oveq12i
⊢
C
F
W
B
∩
C
×
C
=
W
B
-1
B
F
W
B
F
W
B
∩
W
B
-1
B
F
W
B
×
W
B
-1
B
F
W
B
24
19
simpld
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
W
B
25
2
8
24
fpwwe2lem3
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
∧
B
F
W
B
∈
B
→
W
B
-1
B
F
W
B
F
W
B
∩
W
B
-1
B
F
W
B
×
W
B
-1
B
F
W
B
=
B
F
W
B
26
20
25
mpdan
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
-1
B
F
W
B
F
W
B
∩
W
B
-1
B
F
W
B
×
W
B
-1
B
F
W
B
=
B
F
W
B
27
23
26
eqtrid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
F
W
B
∩
C
×
C
=
B
F
W
B
28
df-ov
⊢
C
F
W
B
∩
C
×
C
=
F
C
W
B
∩
C
×
C
29
df-ov
⊢
B
F
W
B
=
F
B
W
B
30
27
28
29
3eqtr3g
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
F
C
W
B
∩
C
×
C
=
F
B
W
B
31
simpr
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
F
:
O
⟶
1-1
A
32
cnvimass
⊢
W
B
-1
B
F
W
B
⊆
dom
W
B
33
2
8
fpwwe2lem2
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
W
B
↔
B
⊆
A
∧
W
B
⊆
B
×
B
∧
W
B
We
B
∧
∀
y
∈
B
[
˙
W
B
-1
y
/
u
]
˙
u
F
W
B
∩
u
×
u
=
y
34
24
33
mpbid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
⊆
A
∧
W
B
⊆
B
×
B
∧
W
B
We
B
∧
∀
y
∈
B
[
˙
W
B
-1
y
/
u
]
˙
u
F
W
B
∩
u
×
u
=
y
35
34
simpld
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
⊆
A
∧
W
B
⊆
B
×
B
36
35
simprd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
⊆
B
×
B
37
dmss
⊢
W
B
⊆
B
×
B
→
dom
W
B
⊆
dom
B
×
B
38
36
37
syl
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
dom
W
B
⊆
dom
B
×
B
39
dmxpss
⊢
dom
B
×
B
⊆
B
40
38
39
sstrdi
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
dom
W
B
⊆
B
41
32
40
sstrid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
-1
B
F
W
B
⊆
B
42
4
41
eqsstrid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
⊆
B
43
35
simpld
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
⊆
A
44
42
43
sstrd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
⊆
A
45
inss2
⊢
W
B
∩
C
×
C
⊆
C
×
C
46
45
a1i
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
∩
C
×
C
⊆
C
×
C
47
34
simprd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
We
B
∧
∀
y
∈
B
[
˙
W
B
-1
y
/
u
]
˙
u
F
W
B
∩
u
×
u
=
y
48
47
simpld
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
We
B
49
wess
⊢
C
⊆
B
→
W
B
We
B
→
W
B
We
C
50
42
48
49
sylc
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
We
C
51
weinxp
⊢
W
B
We
C
↔
W
B
∩
C
×
C
We
C
52
50
51
sylib
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
∩
C
×
C
We
C
53
fvex
⊢
W
B
∈
V
54
53
cnvex
⊢
W
B
-1
∈
V
55
54
imaex
⊢
W
B
-1
B
F
W
B
∈
V
56
4
55
eqeltri
⊢
C
∈
V
57
53
inex1
⊢
W
B
∩
C
×
C
∈
V
58
simpl
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
x
=
C
59
58
sseq1d
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
x
⊆
A
↔
C
⊆
A
60
simpr
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
r
=
W
B
∩
C
×
C
61
58
sqxpeqd
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
x
×
x
=
C
×
C
62
60
61
sseq12d
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
r
⊆
x
×
x
↔
W
B
∩
C
×
C
⊆
C
×
C
63
weeq2
⊢
x
=
C
→
r
We
x
↔
r
We
C
64
weeq1
⊢
r
=
W
B
∩
C
×
C
→
r
We
C
↔
W
B
∩
C
×
C
We
C
65
63
64
sylan9bb
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
r
We
x
↔
W
B
∩
C
×
C
We
C
66
59
62
65
3anbi123d
⊢
x
=
C
∧
r
=
W
B
∩
C
×
C
→
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
C
⊆
A
∧
W
B
∩
C
×
C
⊆
C
×
C
∧
W
B
∩
C
×
C
We
C
67
56
57
66
opelopaba
⊢
C
W
B
∩
C
×
C
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
C
⊆
A
∧
W
B
∩
C
×
C
⊆
C
×
C
∧
W
B
∩
C
×
C
We
C
68
44
46
52
67
syl3anbrc
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
W
B
∩
C
×
C
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
69
68
1
eleqtrrdi
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
W
B
∩
C
×
C
∈
O
70
8
43
ssexd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
∈
V
71
53
a1i
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
∈
V
72
simpl
⊢
x
=
B
∧
r
=
W
B
→
x
=
B
73
72
sseq1d
⊢
x
=
B
∧
r
=
W
B
→
x
⊆
A
↔
B
⊆
A
74
simpr
⊢
x
=
B
∧
r
=
W
B
→
r
=
W
B
75
72
sqxpeqd
⊢
x
=
B
∧
r
=
W
B
→
x
×
x
=
B
×
B
76
74
75
sseq12d
⊢
x
=
B
∧
r
=
W
B
→
r
⊆
x
×
x
↔
W
B
⊆
B
×
B
77
weeq2
⊢
x
=
B
→
r
We
x
↔
r
We
B
78
weeq1
⊢
r
=
W
B
→
r
We
B
↔
W
B
We
B
79
77
78
sylan9bb
⊢
x
=
B
∧
r
=
W
B
→
r
We
x
↔
W
B
We
B
80
73
76
79
3anbi123d
⊢
x
=
B
∧
r
=
W
B
→
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
B
⊆
A
∧
W
B
⊆
B
×
B
∧
W
B
We
B
81
80
opelopabga
⊢
B
∈
V
∧
W
B
∈
V
→
B
W
B
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
B
⊆
A
∧
W
B
⊆
B
×
B
∧
W
B
We
B
82
70
71
81
syl2anc
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
B
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
↔
B
⊆
A
∧
W
B
⊆
B
×
B
∧
W
B
We
B
83
43
36
48
82
mpbir3and
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
B
∈
x
r
|
x
⊆
A
∧
r
⊆
x
×
x
∧
r
We
x
84
83
1
eleqtrrdi
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
W
B
∈
O
85
f1fveq
⊢
F
:
O
⟶
1-1
A
∧
C
W
B
∩
C
×
C
∈
O
∧
B
W
B
∈
O
→
F
C
W
B
∩
C
×
C
=
F
B
W
B
↔
C
W
B
∩
C
×
C
=
B
W
B
86
31
69
84
85
syl12anc
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
F
C
W
B
∩
C
×
C
=
F
B
W
B
↔
C
W
B
∩
C
×
C
=
B
W
B
87
30
86
mpbid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
W
B
∩
C
×
C
=
B
W
B
88
56
57
opth1
⊢
C
W
B
∩
C
×
C
=
B
W
B
→
C
=
B
89
87
88
syl
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
C
=
B
90
20
89
eleqtrrd
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
F
W
B
∈
C
91
90
4
eleqtrdi
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
F
W
B
∈
W
B
-1
B
F
W
B
92
ovex
⊢
B
F
W
B
∈
V
93
92
eliniseg
⊢
B
F
W
B
∈
B
→
B
F
W
B
∈
W
B
-1
B
F
W
B
↔
B
F
W
B
W
B
B
F
W
B
94
20
93
syl
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
F
W
B
∈
W
B
-1
B
F
W
B
↔
B
F
W
B
W
B
B
F
W
B
95
91
94
mpbid
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
B
F
W
B
W
B
B
F
W
B
96
weso
⊢
W
B
We
B
→
W
B
Or
B
97
48
96
syl
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
W
B
Or
B
98
sonr
⊢
W
B
Or
B
∧
B
F
W
B
∈
B
→
¬
B
F
W
B
W
B
B
F
W
B
99
97
20
98
syl2anc
⊢
A
∈
V
∧
F
:
O
⟶
1-1
A
→
¬
B
F
W
B
W
B
B
F
W
B
100
95
99
pm2.65da
⊢
A
∈
V
→
¬
F
:
O
⟶
1-1
A