| Step | Hyp | Ref | Expression | 
						
							| 1 |  | canthwe.1 |  | 
						
							| 2 |  | canthwe.2 |  | 
						
							| 3 |  | canthwe.3 |  | 
						
							| 4 |  | canthwe.4 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | pm3.2i |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 |  | df-ov |  | 
						
							| 10 |  | f1f |  | 
						
							| 11 | 10 | ad2antlr |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 |  | opabidw |  | 
						
							| 14 | 12 13 | sylibr |  | 
						
							| 15 | 14 1 | eleqtrrdi |  | 
						
							| 16 | 11 15 | ffvelcdmd |  | 
						
							| 17 | 9 16 | eqeltrid |  | 
						
							| 18 | 2 8 17 3 | fpwwe2 |  | 
						
							| 19 | 7 18 | mpbiri |  | 
						
							| 20 | 19 | simprd |  | 
						
							| 21 | 4 4 | xpeq12i |  | 
						
							| 22 | 21 | ineq2i |  | 
						
							| 23 | 4 22 | oveq12i |  | 
						
							| 24 | 19 | simpld |  | 
						
							| 25 | 2 8 24 | fpwwe2lem3 |  | 
						
							| 26 | 20 25 | mpdan |  | 
						
							| 27 | 23 26 | eqtrid |  | 
						
							| 28 |  | df-ov |  | 
						
							| 29 |  | df-ov |  | 
						
							| 30 | 27 28 29 | 3eqtr3g |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 |  | cnvimass |  | 
						
							| 33 | 2 8 | fpwwe2lem2 |  | 
						
							| 34 | 24 33 | mpbid |  | 
						
							| 35 | 34 | simpld |  | 
						
							| 36 | 35 | simprd |  | 
						
							| 37 |  | dmss |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 |  | dmxpss |  | 
						
							| 40 | 38 39 | sstrdi |  | 
						
							| 41 | 32 40 | sstrid |  | 
						
							| 42 | 4 41 | eqsstrid |  | 
						
							| 43 | 35 | simpld |  | 
						
							| 44 | 42 43 | sstrd |  | 
						
							| 45 |  | inss2 |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 | 34 | simprd |  | 
						
							| 48 | 47 | simpld |  | 
						
							| 49 |  | wess |  | 
						
							| 50 | 42 48 49 | sylc |  | 
						
							| 51 |  | weinxp |  | 
						
							| 52 | 50 51 | sylib |  | 
						
							| 53 |  | fvex |  | 
						
							| 54 | 53 | cnvex |  | 
						
							| 55 | 54 | imaex |  | 
						
							| 56 | 4 55 | eqeltri |  | 
						
							| 57 | 53 | inex1 |  | 
						
							| 58 |  | simpl |  | 
						
							| 59 | 58 | sseq1d |  | 
						
							| 60 |  | simpr |  | 
						
							| 61 | 58 | sqxpeqd |  | 
						
							| 62 | 60 61 | sseq12d |  | 
						
							| 63 | 60 58 | weeq12d |  | 
						
							| 64 | 59 62 63 | 3anbi123d |  | 
						
							| 65 | 56 57 64 | opelopaba |  | 
						
							| 66 | 44 46 52 65 | syl3anbrc |  | 
						
							| 67 | 66 1 | eleqtrrdi |  | 
						
							| 68 | 8 43 | ssexd |  | 
						
							| 69 | 53 | a1i |  | 
						
							| 70 |  | simpl |  | 
						
							| 71 | 70 | sseq1d |  | 
						
							| 72 |  | simpr |  | 
						
							| 73 | 70 | sqxpeqd |  | 
						
							| 74 | 72 73 | sseq12d |  | 
						
							| 75 | 72 70 | weeq12d |  | 
						
							| 76 | 71 74 75 | 3anbi123d |  | 
						
							| 77 | 76 | opelopabga |  | 
						
							| 78 | 68 69 77 | syl2anc |  | 
						
							| 79 | 43 36 48 78 | mpbir3and |  | 
						
							| 80 | 79 1 | eleqtrrdi |  | 
						
							| 81 |  | f1fveq |  | 
						
							| 82 | 31 67 80 81 | syl12anc |  | 
						
							| 83 | 30 82 | mpbid |  | 
						
							| 84 | 56 57 | opth1 |  | 
						
							| 85 | 83 84 | syl |  | 
						
							| 86 | 20 85 | eleqtrrd |  | 
						
							| 87 | 86 4 | eleqtrdi |  | 
						
							| 88 |  | ovex |  | 
						
							| 89 | 88 | eliniseg |  | 
						
							| 90 | 20 89 | syl |  | 
						
							| 91 | 87 90 | mpbid |  | 
						
							| 92 |  | weso |  | 
						
							| 93 | 48 92 | syl |  | 
						
							| 94 |  | sonr |  | 
						
							| 95 | 93 20 94 | syl2anc |  | 
						
							| 96 | 91 95 | pm2.65da |  |