Metamath Proof Explorer


Theorem cayhamlem3

Description: Lemma for cayhamlem4 . (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A = N Mat R
chcoeffeq.b B = Base A
chcoeffeq.p P = Poly 1 R
chcoeffeq.y Y = N Mat P
chcoeffeq.r × ˙ = Y
chcoeffeq.s - ˙ = - Y
chcoeffeq.0 0 ˙ = 0 Y
chcoeffeq.t T = N matToPolyMat R
chcoeffeq.c C = N CharPlyMat R
chcoeffeq.k K = C M
chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chcoeffeq.w W = Base Y
chcoeffeq.1 1 ˙ = 1 A
chcoeffeq.m ˙ = A
chcoeffeq.u U = N cPolyMatToMat R
cayhamlem.e1 × ˙ = mulGrp A
cayhamlem.r · ˙ = A
Assertion cayhamlem3 N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A = N Mat R
2 chcoeffeq.b B = Base A
3 chcoeffeq.p P = Poly 1 R
4 chcoeffeq.y Y = N Mat P
5 chcoeffeq.r × ˙ = Y
6 chcoeffeq.s - ˙ = - Y
7 chcoeffeq.0 0 ˙ = 0 Y
8 chcoeffeq.t T = N matToPolyMat R
9 chcoeffeq.c C = N CharPlyMat R
10 chcoeffeq.k K = C M
11 chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
12 chcoeffeq.w W = Base Y
13 chcoeffeq.1 1 ˙ = 1 A
14 chcoeffeq.m ˙ = A
15 chcoeffeq.u U = N cPolyMatToMat R
16 cayhamlem.e1 × ˙ = mulGrp A
17 cayhamlem.r · ˙ = A
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 chcoeffeq N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙
19 2fveq3 n = l U G n = U G l
20 fveq2 n = l coe 1 K n = coe 1 K l
21 20 oveq1d n = l coe 1 K n ˙ 1 ˙ = coe 1 K l ˙ 1 ˙
22 19 21 eqeq12d n = l U G n = coe 1 K n ˙ 1 ˙ U G l = coe 1 K l ˙ 1 ˙
23 22 cbvralvw n 0 U G n = coe 1 K n ˙ 1 ˙ l 0 U G l = coe 1 K l ˙ 1 ˙
24 2fveq3 l = n U G l = U G n
25 fveq2 l = n coe 1 K l = coe 1 K n
26 25 oveq1d l = n coe 1 K l ˙ 1 ˙ = coe 1 K n ˙ 1 ˙
27 24 26 eqeq12d l = n U G l = coe 1 K l ˙ 1 ˙ U G n = coe 1 K n ˙ 1 ˙
28 27 rspccva l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 U G n = coe 1 K n ˙ 1 ˙
29 simprll n 0 N Fin R CRing M B s b B 0 s N Fin R CRing M B
30 eqid Base P = Base P
31 9 1 2 3 30 chpmatply1 N Fin R CRing M B C M Base P
32 29 31 syl n 0 N Fin R CRing M B s b B 0 s C M Base P
33 10 32 eqeltrid n 0 N Fin R CRing M B s b B 0 s K Base P
34 eqid coe 1 K = coe 1 K
35 eqid Base R = Base R
36 34 30 3 35 coe1f K Base P coe 1 K : 0 Base R
37 33 36 syl n 0 N Fin R CRing M B s b B 0 s coe 1 K : 0 Base R
38 fvex Base R V
39 nn0ex 0 V
40 38 39 pm3.2i Base R V 0 V
41 elmapg Base R V 0 V coe 1 K Base R 0 coe 1 K : 0 Base R
42 40 41 mp1i n 0 N Fin R CRing M B s b B 0 s coe 1 K Base R 0 coe 1 K : 0 Base R
43 37 42 mpbird n 0 N Fin R CRing M B s b B 0 s coe 1 K Base R 0
44 simpl n 0 N Fin R CRing M B s b B 0 s n 0
45 35 1 2 13 14 16 17 cayhamlem2 N Fin R CRing M B coe 1 K Base R 0 n 0 coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ coe 1 K n ˙ 1 ˙
46 29 43 44 45 syl12anc n 0 N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ coe 1 K n ˙ 1 ˙
47 46 adantl U G n = coe 1 K n ˙ 1 ˙ n 0 N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ coe 1 K n ˙ 1 ˙
48 oveq2 U G n = coe 1 K n ˙ 1 ˙ n × ˙ M · ˙ U G n = n × ˙ M · ˙ coe 1 K n ˙ 1 ˙
49 48 adantr U G n = coe 1 K n ˙ 1 ˙ n 0 N Fin R CRing M B s b B 0 s n × ˙ M · ˙ U G n = n × ˙ M · ˙ coe 1 K n ˙ 1 ˙
50 47 49 eqtr4d U G n = coe 1 K n ˙ 1 ˙ n 0 N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
51 50 exp32 U G n = coe 1 K n ˙ 1 ˙ n 0 N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
52 51 com12 n 0 U G n = coe 1 K n ˙ 1 ˙ N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
53 52 adantl l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 U G n = coe 1 K n ˙ 1 ˙ N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
54 28 53 mpd l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 N Fin R CRing M B s b B 0 s coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
55 54 com12 N Fin R CRing M B s b B 0 s l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
56 55 impl N Fin R CRing M B s b B 0 s l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 coe 1 K n ˙ n × ˙ M = n × ˙ M · ˙ U G n
57 56 mpteq2dva N Fin R CRing M B s b B 0 s l 0 U G l = coe 1 K l ˙ 1 ˙ n 0 coe 1 K n ˙ n × ˙ M = n 0 n × ˙ M · ˙ U G n
58 57 oveq2d N Fin R CRing M B s b B 0 s l 0 U G l = coe 1 K l ˙ 1 ˙ A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n
59 58 ex N Fin R CRing M B s b B 0 s l 0 U G l = coe 1 K l ˙ 1 ˙ A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n
60 23 59 syl5bi N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙ A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n
61 60 reximdva N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙ b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n
62 61 reximdva N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙ s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n
63 18 62 mpd N Fin R CRing M B s b B 0 s A n 0 coe 1 K n ˙ n × ˙ M = A n 0 n × ˙ M · ˙ U G n