Step |
Hyp |
Ref |
Expression |
1 |
|
ccatmulgnn0dir.a |
|
2 |
|
ccatmulgnn0dir.b |
|
3 |
|
ccatmulgnn0dir.c |
|
4 |
|
ccatmulgnn0dir.k |
|
5 |
|
ccatmulgnn0dir.m |
|
6 |
|
ccatmulgnn0dir.n |
|
7 |
1
|
fveq2i |
|
8 |
|
fzofi |
|
9 |
|
snfi |
|
10 |
|
hashxp |
|
11 |
8 9 10
|
mp2an |
|
12 |
7 11
|
eqtri |
|
13 |
|
hashfzo0 |
|
14 |
5 13
|
syl |
|
15 |
|
hashsng |
|
16 |
4 15
|
syl |
|
17 |
14 16
|
oveq12d |
|
18 |
12 17
|
eqtrid |
|
19 |
5
|
nn0cnd |
|
20 |
19
|
mulid1d |
|
21 |
18 20
|
eqtrd |
|
22 |
2
|
fveq2i |
|
23 |
|
fzofi |
|
24 |
|
hashxp |
|
25 |
23 9 24
|
mp2an |
|
26 |
22 25
|
eqtri |
|
27 |
|
hashfzo0 |
|
28 |
6 27
|
syl |
|
29 |
28 16
|
oveq12d |
|
30 |
26 29
|
eqtrid |
|
31 |
6
|
nn0cnd |
|
32 |
31
|
mulid1d |
|
33 |
30 32
|
eqtrd |
|
34 |
21 33
|
oveq12d |
|
35 |
34
|
oveq2d |
|
36 |
|
simpll |
|
37 |
|
simpr |
|
38 |
21
|
oveq2d |
|
39 |
36 38
|
syl |
|
40 |
37 39
|
eleqtrd |
|
41 |
|
fconstg |
|
42 |
4 41
|
syl |
|
43 |
1
|
a1i |
|
44 |
43
|
feq1d |
|
45 |
42 44
|
mpbird |
|
46 |
|
fvconst |
|
47 |
45 46
|
sylan |
|
48 |
36 40 47
|
syl2anc |
|
49 |
|
simpll |
|
50 |
|
simplr |
|
51 |
|
simpr |
|
52 |
21 5
|
eqeltrd |
|
53 |
49 52
|
syl |
|
54 |
53
|
nn0zd |
|
55 |
33 6
|
eqeltrd |
|
56 |
49 55
|
syl |
|
57 |
56
|
nn0zd |
|
58 |
|
fzocatel |
|
59 |
50 51 54 57 58
|
syl22anc |
|
60 |
33
|
oveq2d |
|
61 |
49 60
|
syl |
|
62 |
59 61
|
eleqtrd |
|
63 |
|
fconstg |
|
64 |
4 63
|
syl |
|
65 |
2
|
a1i |
|
66 |
65
|
feq1d |
|
67 |
64 66
|
mpbird |
|
68 |
|
fvconst |
|
69 |
67 68
|
sylan |
|
70 |
49 62 69
|
syl2anc |
|
71 |
48 70
|
ifeqda |
|
72 |
35 71
|
mpteq12dva |
|
73 |
|
ovex |
|
74 |
|
snex |
|
75 |
73 74
|
xpex |
|
76 |
1 75
|
eqeltri |
|
77 |
|
ovex |
|
78 |
77 74
|
xpex |
|
79 |
2 78
|
eqeltri |
|
80 |
|
ccatfval |
|
81 |
76 79 80
|
mp2an |
|
82 |
|
fconstmpt |
|
83 |
3 82
|
eqtri |
|
84 |
72 81 83
|
3eqtr4g |
|