Metamath Proof Explorer


Theorem cdleme11c

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
Assertion cdleme11c KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙T¬P˙S˙T

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 simp3l KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙T¬S˙P˙Q
8 simp11l KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TKHL
9 simp12l KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TPA
10 simp11 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TKHLWH
11 simp12 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TPA¬P˙W
12 simp13 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TQA
13 simp23 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TPQ
14 1 2 3 4 5 6 lhpat2 KHLWHPA¬P˙WQAPQUA
15 10 11 12 13 14 syl112anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TUA
16 1 2 4 hlatlej1 KHLPAUAP˙P˙U
17 8 9 15 16 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙P˙U
18 17 adantr KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TP˙P˙U
19 12 13 jca KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TQAPQ
20 simp21 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TSA¬S˙W
21 simp22 KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TTA
22 simp3r KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TU˙S˙T
23 21 22 jca KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TTAU˙S˙T
24 1 2 3 4 5 6 cdleme11a KHLWHPA¬P˙WQAPQSA¬S˙WTAU˙S˙TS˙U=S˙T
25 10 11 19 20 23 24 syl122anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TS˙U=S˙T
26 25 breq2d KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙UP˙S˙T
27 simp21l KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TSA
28 1 2 3 4 5 6 cdleme0b KHLWHPA¬P˙WQAUP
29 10 11 12 28 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TUP
30 29 necomd KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TPU
31 1 2 4 hlatexch2 KHLPASAUAPUP˙S˙US˙P˙U
32 8 9 27 15 30 31 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙US˙P˙U
33 26 32 sylbird KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙P˙U
34 33 imp KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙P˙U
35 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
36 8 9 12 35 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TQ˙P˙Q
37 1 2 3 4 5 6 cdleme0cp KHLWHPA¬P˙WQAP˙U=P˙Q
38 10 11 12 37 syl12anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙U=P˙Q
39 36 38 breqtrrd KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TQ˙P˙U
40 39 adantr KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TQ˙P˙U
41 8 hllatd KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TKLat
42 eqid BaseK=BaseK
43 42 4 atbase SASBaseK
44 27 43 syl KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TSBaseK
45 42 4 atbase QAQBaseK
46 12 45 syl KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TQBaseK
47 42 2 4 hlatjcl KHLPAUAP˙UBaseK
48 8 9 15 47 syl3anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙UBaseK
49 42 1 2 latjle12 KLatSBaseKQBaseKP˙UBaseKS˙P˙UQ˙P˙US˙Q˙P˙U
50 41 44 46 48 49 syl13anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TS˙P˙UQ˙P˙US˙Q˙P˙U
51 50 adantr KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙P˙UQ˙P˙US˙Q˙P˙U
52 34 40 51 mpbi2and KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙Q˙P˙U
53 42 4 atbase PAPBaseK
54 9 53 syl KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TPBaseK
55 42 1 2 latnlej1r KLatSBaseKPBaseKQBaseK¬S˙P˙QSQ
56 41 44 54 46 7 55 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TSQ
57 1 2 4 ps-1 KHLSAQASQPAUAS˙Q˙P˙US˙Q=P˙U
58 8 27 12 56 9 15 57 syl132anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TS˙Q˙P˙US˙Q=P˙U
59 58 adantr KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙Q˙P˙US˙Q=P˙U
60 52 59 mpbid KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙Q=P˙U
61 18 60 breqtrrd KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TP˙S˙Q
62 61 ex KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TP˙S˙Q
63 1 2 4 hlatexch2 KHLPASAQAPQP˙S˙QS˙P˙Q
64 8 9 27 12 13 63 syl131anc KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙QS˙P˙Q
65 62 64 syld KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙TP˙S˙TS˙P˙Q
66 7 65 mtod KHLWHPA¬P˙WQASA¬S˙WTAPQ¬S˙P˙QU˙S˙T¬P˙S˙T