Metamath Proof Explorer


Theorem cdlemi2

Description: Part of proof of Lemma I of Crawley p. 118. (Contributed by NM, 18-Jun-2013)

Ref Expression
Hypotheses cdlemi.b B=BaseK
cdlemi.l ˙=K
cdlemi.j ˙=joinK
cdlemi.m ˙=meetK
cdlemi.a A=AtomsK
cdlemi.h H=LHypK
cdlemi.t T=LTrnKW
cdlemi.r R=trLKW
cdlemi.e E=TEndoKW
Assertion cdlemi2 KHLWHUEFTGTPA¬P˙WUGP˙UFP˙RGF-1

Proof

Step Hyp Ref Expression
1 cdlemi.b B=BaseK
2 cdlemi.l ˙=K
3 cdlemi.j ˙=joinK
4 cdlemi.m ˙=meetK
5 cdlemi.a A=AtomsK
6 cdlemi.h H=LHypK
7 cdlemi.t T=LTrnKW
8 cdlemi.r R=trLKW
9 cdlemi.e E=TEndoKW
10 simp1l KHLWHUEFTGTPA¬P˙WKHL
11 simp1r KHLWHUEFTGTPA¬P˙WWH
12 simp21 KHLWHUEFTGTPA¬P˙WUE
13 simp1 KHLWHUEFTGTPA¬P˙WKHLWH
14 simp23 KHLWHUEFTGTPA¬P˙WGT
15 simp22 KHLWHUEFTGTPA¬P˙WFT
16 6 7 ltrncnv KHLWHFTF-1T
17 13 15 16 syl2anc KHLWHUEFTGTPA¬P˙WF-1T
18 6 7 ltrnco KHLWHGTF-1TGF-1T
19 13 14 17 18 syl3anc KHLWHUEFTGTPA¬P˙WGF-1T
20 6 7 9 tendovalco KHLWHUEGF-1TFTUGF-1F=UGF-1UF
21 10 11 12 19 15 20 syl32anc KHLWHUEFTGTPA¬P˙WUGF-1F=UGF-1UF
22 coass GF-1F=GF-1F
23 1 6 7 ltrn1o KHLWHFTF:B1-1 ontoB
24 13 15 23 syl2anc KHLWHUEFTGTPA¬P˙WF:B1-1 ontoB
25 f1ococnv1 F:B1-1 ontoBF-1F=IB
26 24 25 syl KHLWHUEFTGTPA¬P˙WF-1F=IB
27 26 coeq2d KHLWHUEFTGTPA¬P˙WGF-1F=GIB
28 1 6 7 ltrn1o KHLWHGTG:B1-1 ontoB
29 13 14 28 syl2anc KHLWHUEFTGTPA¬P˙WG:B1-1 ontoB
30 f1of G:B1-1 ontoBG:BB
31 fcoi1 G:BBGIB=G
32 29 30 31 3syl KHLWHUEFTGTPA¬P˙WGIB=G
33 27 32 eqtrd KHLWHUEFTGTPA¬P˙WGF-1F=G
34 22 33 eqtrid KHLWHUEFTGTPA¬P˙WGF-1F=G
35 34 fveq2d KHLWHUEFTGTPA¬P˙WUGF-1F=UG
36 21 35 eqtr3d KHLWHUEFTGTPA¬P˙WUGF-1UF=UG
37 36 fveq1d KHLWHUEFTGTPA¬P˙WUGF-1UFP=UGP
38 6 7 9 tendocl KHLWHUEGF-1TUGF-1T
39 13 12 19 38 syl3anc KHLWHUEFTGTPA¬P˙WUGF-1T
40 6 7 9 tendocl KHLWHUEFTUFT
41 13 12 15 40 syl3anc KHLWHUEFTGTPA¬P˙WUFT
42 simp3l KHLWHUEFTGTPA¬P˙WPA
43 2 5 6 7 ltrncoval KHLWHUGF-1TUFTPAUGF-1UFP=UGF-1UFP
44 13 39 41 42 43 syl121anc KHLWHUEFTGTPA¬P˙WUGF-1UFP=UGF-1UFP
45 37 44 eqtr3d KHLWHUEFTGTPA¬P˙WUGP=UGF-1UFP
46 2 5 6 7 ltrnel KHLWHUFTPA¬P˙WUFPA¬UFP˙W
47 41 46 syld3an2 KHLWHUEFTGTPA¬P˙WUFPA¬UFP˙W
48 1 2 3 4 5 6 7 8 9 cdlemi1 KHLWHUEGF-1TUFPA¬UFP˙WUGF-1UFP˙UFP˙RGF-1
49 13 12 19 47 48 syl121anc KHLWHUEFTGTPA¬P˙WUGF-1UFP˙UFP˙RGF-1
50 45 49 eqbrtrd KHLWHUEFTGTPA¬P˙WUGP˙UFP˙RGF-1