Metamath Proof Explorer


Theorem cdlemksv2

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function S at the fixed P parameter. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
Assertion cdlemksv2 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P = P ˙ R G ˙ N P ˙ R G F -1

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 simp13 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F G T
11 1 2 3 4 5 6 7 8 9 cdlemksv G T S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
12 10 11 syl K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
13 12 eqcomd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 = S G
14 1 2 3 4 5 6 7 8 9 cdlemksel K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G T
15 simp11 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL W H
16 simp22 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A ¬ P ˙ W
17 simp1 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL W H F T G T
18 simp21 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N T
19 2 4 5 6 ltrnel K HL W H N T P A ¬ P ˙ W N P A ¬ N P ˙ W
20 15 18 16 19 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P A ¬ N P ˙ W
21 simp11l K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL
22 simp22l K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A
23 20 simpld K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P A
24 2 3 4 hlatlej2 K HL P A N P A N P ˙ P ˙ N P
25 21 22 23 24 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P ˙ P ˙ N P
26 simp23 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R F = R N
27 26 oveq2d K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R F = P ˙ R N
28 2 3 4 5 6 7 trljat1 K HL W H N T P A ¬ P ˙ W P ˙ R N = P ˙ N P
29 15 18 16 28 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R N = P ˙ N P
30 27 29 eqtr2d K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P = P ˙ R F
31 25 30 breqtrd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P ˙ P ˙ R F
32 simp31 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F F I B
33 simp32 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F G I B
34 simp33 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R G R F
35 34 necomd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R F R G
36 eqid P ˙ R G ˙ N P ˙ R G F -1 = P ˙ R G ˙ N P ˙ R G F -1
37 1 2 3 8 4 5 6 7 36 cdlemh K HL W H F T G T P A ¬ P ˙ W N P A ¬ N P ˙ W N P ˙ P ˙ R F F I B G I B R F R G P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W
38 17 16 20 31 32 33 35 37 syl133anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W
39 2 4 5 6 cdleme K HL W H P A ¬ P ˙ W P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W ∃! i T i P = P ˙ R G ˙ N P ˙ R G F -1
40 15 16 38 39 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F ∃! i T i P = P ˙ R G ˙ N P ˙ R G F -1
41 nfcv _ i T
42 nfriota1 _ i ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
43 41 42 nfmpt _ i f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
44 9 43 nfcxfr _ i S
45 nfcv _ i G
46 44 45 nffv _ i S G
47 nfcv _ i P
48 46 47 nffv _ i S G P
49 48 nfeq1 i S G P = P ˙ R G ˙ N P ˙ R G F -1
50 fveq1 i = S G i P = S G P
51 50 eqeq1d i = S G i P = P ˙ R G ˙ N P ˙ R G F -1 S G P = P ˙ R G ˙ N P ˙ R G F -1
52 46 49 51 riota2f S G T ∃! i T i P = P ˙ R G ˙ N P ˙ R G F -1 S G P = P ˙ R G ˙ N P ˙ R G F -1 ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 = S G
53 14 40 52 syl2anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P = P ˙ R G ˙ N P ˙ R G F -1 ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1 = S G
54 13 53 mpbird K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F S G P = P ˙ R G ˙ N P ˙ R G F -1