Metamath Proof Explorer


Theorem cfpwsdom

Description: A corollary of Konig's Theorem konigth . Theorem 11.29 of TakeutiZaring p. 108. (Contributed by Mario Carneiro, 20-Mar-2013)

Ref Expression
Hypothesis cfpwsdom.1 BV
Assertion cfpwsdom 2𝑜BAcfcardBA

Proof

Step Hyp Ref Expression
1 cfpwsdom.1 BV
2 ovex BAV
3 2 cardid cardBABA
4 3 ensymi BAcardBA
5 fvex AV
6 5 canth2 A𝒫A
7 5 pw2en 𝒫A2𝑜A
8 sdomentr A𝒫A𝒫A2𝑜AA2𝑜A
9 6 7 8 mp2an A2𝑜A
10 mapdom1 2𝑜B2𝑜ABA
11 sdomdomtr A2𝑜A2𝑜ABAABA
12 9 10 11 sylancr 2𝑜BABA
13 ficard BAVBAFincardBAω
14 2 13 ax-mp BAFincardBAω
15 fict BAFinBAω
16 14 15 sylbir cardBAωBAω
17 alephgeom AOnωA
18 alephon AOn
19 ssdomg AOnωAωA
20 18 19 ax-mp ωAωA
21 17 20 sylbi AOnωA
22 domtr BAωωABAA
23 16 21 22 syl2an cardBAωAOnBAA
24 domnsym BAA¬ABA
25 23 24 syl cardBAωAOn¬ABA
26 25 expcom AOncardBAω¬ABA
27 26 con2d AOnABA¬cardBAω
28 cardidm cardcardBA=cardBA
29 iscard3 cardcardBA=cardBAcardBAωran
30 elun cardBAωrancardBAωcardBAran
31 df-or cardBAωcardBAran¬cardBAωcardBAran
32 29 30 31 3bitri cardcardBA=cardBA¬cardBAωcardBAran
33 28 32 mpbi ¬cardBAωcardBAran
34 12 27 33 syl56 AOn2𝑜BcardBAran
35 alephfnon FnOn
36 fvelrnb FnOncardBAranxOnx=cardBA
37 35 36 ax-mp cardBAranxOnx=cardBA
38 34 37 imbitrdi AOn2𝑜BxOnx=cardBA
39 eqid ycfxharzy=ycfxharzy
40 39 pwcfsdom xxcfx
41 id x=cardBAx=cardBA
42 fveq2 x=cardBAcfx=cfcardBA
43 41 42 oveq12d x=cardBAxcfx=cardBAcfcardBA
44 41 43 breq12d x=cardBAxxcfxcardBAcardBAcfcardBA
45 40 44 mpbii x=cardBAcardBAcardBAcfcardBA
46 45 rexlimivw xOnx=cardBAcardBAcardBAcfcardBA
47 38 46 syl6 AOn2𝑜BcardBAcardBAcfcardBA
48 47 imp AOn2𝑜BcardBAcardBAcfcardBA
49 ensdomtr BAcardBAcardBAcardBAcfcardBABAcardBAcfcardBA
50 4 48 49 sylancr AOn2𝑜BBAcardBAcfcardBA
51 fvex cfcardBAV
52 51 enref cfcardBAcfcardBA
53 mapen cardBABAcfcardBAcfcardBAcardBAcfcardBABAcfcardBA
54 3 52 53 mp2an cardBAcfcardBABAcfcardBA
55 mapxpen BVAOncfcardBAVBAcfcardBABA×cfcardBA
56 1 18 51 55 mp3an BAcfcardBABA×cfcardBA
57 54 56 entri cardBAcfcardBABA×cfcardBA
58 sdomentr BAcardBAcfcardBAcardBAcfcardBABA×cfcardBABABA×cfcardBA
59 50 57 58 sylancl AOn2𝑜BBABA×cfcardBA
60 5 xpdom2 cfcardBAAA×cfcardBAA×A
61 17 biimpi AOnωA
62 infxpen AOnωAA×AA
63 18 61 62 sylancr AOnA×AA
64 domentr A×cfcardBAA×AA×AAA×cfcardBAA
65 60 63 64 syl2an cfcardBAAAOnA×cfcardBAA
66 nsuceq0 suc1𝑜
67 dom0 suc1𝑜suc1𝑜=
68 66 67 nemtbir ¬suc1𝑜
69 df-2o 2𝑜=suc1𝑜
70 69 breq1i 2𝑜Bsuc1𝑜B
71 breq2 B=suc1𝑜Bsuc1𝑜
72 70 71 bitrid B=2𝑜Bsuc1𝑜
73 72 biimpcd 2𝑜BB=suc1𝑜
74 73 adantld 2𝑜BA×cfcardBA=B=suc1𝑜
75 68 74 mtoi 2𝑜B¬A×cfcardBA=B=
76 mapdom2 A×cfcardBAA¬A×cfcardBA=B=BA×cfcardBABA
77 65 75 76 syl2an cfcardBAAAOn2𝑜BBA×cfcardBABA
78 domnsym BA×cfcardBABA¬BABA×cfcardBA
79 77 78 syl cfcardBAAAOn2𝑜B¬BABA×cfcardBA
80 79 expl cfcardBAAAOn2𝑜B¬BABA×cfcardBA
81 80 com12 AOn2𝑜BcfcardBAA¬BABA×cfcardBA
82 59 81 mt2d AOn2𝑜B¬cfcardBAA
83 domtri cfcardBAVAVcfcardBAA¬AcfcardBA
84 51 5 83 mp2an cfcardBAA¬AcfcardBA
85 84 biimpri ¬AcfcardBAcfcardBAA
86 82 85 nsyl2 AOn2𝑜BAcfcardBA
87 86 ex AOn2𝑜BAcfcardBA
88 fndm FnOndom=On
89 35 88 ax-mp dom=On
90 89 eleq2i AdomAOn
91 ndmfv ¬AdomA=
92 90 91 sylnbir ¬AOnA=
93 1n0 1𝑜
94 1oex 1𝑜V
95 94 0sdom 1𝑜1𝑜
96 93 95 mpbir 1𝑜
97 id A=A=
98 oveq2 A=BA=B
99 map0e BVB=1𝑜
100 1 99 ax-mp B=1𝑜
101 98 100 eqtrdi A=BA=1𝑜
102 101 fveq2d A=cardBA=card1𝑜
103 1onn 1𝑜ω
104 cardnn 1𝑜ωcard1𝑜=1𝑜
105 103 104 ax-mp card1𝑜=1𝑜
106 102 105 eqtrdi A=cardBA=1𝑜
107 106 fveq2d A=cfcardBA=cf1𝑜
108 df-1o 1𝑜=suc
109 108 fveq2i cf1𝑜=cfsuc
110 0elon On
111 cfsuc Oncfsuc=1𝑜
112 110 111 ax-mp cfsuc=1𝑜
113 109 112 eqtri cf1𝑜=1𝑜
114 107 113 eqtrdi A=cfcardBA=1𝑜
115 97 114 breq12d A=AcfcardBA1𝑜
116 96 115 mpbiri A=AcfcardBA
117 116 a1d A=2𝑜BAcfcardBA
118 92 117 syl ¬AOn2𝑜BAcfcardBA
119 87 118 pm2.61i 2𝑜BAcfcardBA