Metamath Proof Explorer


Theorem chcoeffeq

Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019) (Proof shortened by AV, 8-Dec-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A=NMatR
chcoeffeq.b B=BaseA
chcoeffeq.p P=Poly1R
chcoeffeq.y Y=NMatP
chcoeffeq.r ×˙=Y
chcoeffeq.s -˙=-Y
chcoeffeq.0 0˙=0Y
chcoeffeq.t T=NmatToPolyMatR
chcoeffeq.c C=NCharPlyMatR
chcoeffeq.k K=CM
chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
chcoeffeq.w W=BaseY
chcoeffeq.1 1˙=1A
chcoeffeq.m ˙=A
chcoeffeq.u U=NcPolyMatToMatR
Assertion chcoeffeq NFinRCRingMBsbB0sn0UGn=coe1Kn˙1˙

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A=NMatR
2 chcoeffeq.b B=BaseA
3 chcoeffeq.p P=Poly1R
4 chcoeffeq.y Y=NMatP
5 chcoeffeq.r ×˙=Y
6 chcoeffeq.s -˙=-Y
7 chcoeffeq.0 0˙=0Y
8 chcoeffeq.t T=NmatToPolyMatR
9 chcoeffeq.c C=NCharPlyMatR
10 chcoeffeq.k K=CM
11 chcoeffeq.g G=n0ifn=00˙-˙TM×˙Tb0ifn=s+1Tbsifs+1<n0˙Tbn1-˙TM×˙Tbn
12 chcoeffeq.w W=BaseY
13 chcoeffeq.1 1˙=1A
14 chcoeffeq.m ˙=A
15 chcoeffeq.u U=NcPolyMatToMatR
16 eqid NConstPolyMatR=NConstPolyMatR
17 eqid Y=Y
18 eqid 1Y=1Y
19 eqid var1R=var1R
20 eqid var1RY1Y-˙TM=var1RY1Y-˙TM
21 eqid NmaAdjuP=NmaAdjuP
22 eqid Poly1A=Poly1A
23 eqid var1A=var1A
24 eqid Poly1A=Poly1A
25 eqid mulGrpPoly1A=mulGrpPoly1A
26 eqid NpMatToMatPolyR=NpMatToMatPolyR
27 1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26 cpmadumatpoly NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1A
28 eqid mulGrpP=mulGrpP
29 eqid algScP=algScP
30 eqid KY1Y=KY1Y
31 1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26 cpmidpmat NFinRCRingMBNpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A
32 eqid NCharPlyMatR=NCharPlyMatR
33 1 2 32 3 4 19 8 6 17 18 20 21 5 cpmadurid NFinRCRingMBvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NCharPlyMatRMY1Y
34 9 fveq1i CM=NCharPlyMatRM
35 10 34 eqtri K=NCharPlyMatRM
36 35 a1i NFinRCRingMBK=NCharPlyMatRM
37 36 eqcomd NFinRCRingMBNCharPlyMatRM=K
38 37 oveq1d NFinRCRingMBNCharPlyMatRMY1Y=KY1Y
39 33 38 eqtrd NFinRCRingMBvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=KY1Y
40 fveq2 var1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=KY1YNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NpMatToMatPolyRKY1Y
41 simpr NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1A
42 41 adantr NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1A
43 simpr NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A
44 42 43 eqeq12d NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NpMatToMatPolyRKY1YPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1A
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 chcoeffeqlem NFinRCRingMBsbB0sPoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
46 45 adantr NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1APoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
47 46 adantr NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1APoly1An0UGnPoly1AnmulGrpPoly1Avar1A=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
48 44 47 sylbid NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NpMatToMatPolyRKY1Yn0UGn=coe1Kn˙1˙
49 48 exp31 NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1ANpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NpMatToMatPolyRKY1Yn0UGn=coe1Kn˙1˙
50 49 com24 NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=NpMatToMatPolyRKY1YNpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
51 40 50 syl5 NFinRCRingMBsbB0svar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=KY1YNpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
52 51 ex NFinRCRingMBsbB0svar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=KY1YNpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1ANpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
53 52 com24 NFinRCRingMBNpMatToMatPolyRKY1Y=Poly1An0coe1Kn˙1˙Poly1AnmulGrpPoly1Avar1Avar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=KY1YsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
54 31 39 53 mp2d NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
55 54 impl NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1An0UGn=coe1Kn˙1˙
56 55 reximdva NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1AbB0sn0UGn=coe1Kn˙1˙
57 56 reximdva NFinRCRingMBsbB0sNpMatToMatPolyRvar1RY1Y-˙TM×˙NmaAdjuPvar1RY1Y-˙TM=Poly1An0UGnPoly1AnmulGrpPoly1Avar1AsbB0sn0UGn=coe1Kn˙1˙
58 27 57 mpd NFinRCRingMBsbB0sn0UGn=coe1Kn˙1˙