Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019) (Proof shortened by AV, 8-Dec-2019) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | chcoeffeq.a | |
|
chcoeffeq.b | |
||
chcoeffeq.p | |
||
chcoeffeq.y | |
||
chcoeffeq.r | |
||
chcoeffeq.s | |
||
chcoeffeq.0 | |
||
chcoeffeq.t | |
||
chcoeffeq.c | |
||
chcoeffeq.k | |
||
chcoeffeq.g | |
||
chcoeffeq.w | |
||
chcoeffeq.1 | |
||
chcoeffeq.m | |
||
chcoeffeq.u | |
||
Assertion | chcoeffeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chcoeffeq.a | |
|
2 | chcoeffeq.b | |
|
3 | chcoeffeq.p | |
|
4 | chcoeffeq.y | |
|
5 | chcoeffeq.r | |
|
6 | chcoeffeq.s | |
|
7 | chcoeffeq.0 | |
|
8 | chcoeffeq.t | |
|
9 | chcoeffeq.c | |
|
10 | chcoeffeq.k | |
|
11 | chcoeffeq.g | |
|
12 | chcoeffeq.w | |
|
13 | chcoeffeq.1 | |
|
14 | chcoeffeq.m | |
|
15 | chcoeffeq.u | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | eqid | |
|
27 | 1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26 | cpmadumatpoly | |
28 | eqid | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | 1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26 | cpmidpmat | |
32 | eqid | |
|
33 | 1 2 32 3 4 19 8 6 17 18 20 21 5 | cpmadurid | |
34 | 9 | fveq1i | |
35 | 10 34 | eqtri | |
36 | 35 | a1i | |
37 | 36 | eqcomd | |
38 | 37 | oveq1d | |
39 | 33 38 | eqtrd | |
40 | fveq2 | |
|
41 | simpr | |
|
42 | 41 | adantr | |
43 | simpr | |
|
44 | 42 43 | eqeq12d | |
45 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | chcoeffeqlem | |
46 | 45 | adantr | |
47 | 46 | adantr | |
48 | 44 47 | sylbid | |
49 | 48 | exp31 | |
50 | 49 | com24 | |
51 | 40 50 | syl5 | |
52 | 51 | ex | |
53 | 52 | com24 | |
54 | 31 39 53 | mp2d | |
55 | 54 | impl | |
56 | 55 | reximdva | |
57 | 56 | reximdva | |
58 | 27 57 | mpd | |