Metamath Proof Explorer


Theorem chcoeffeq

Description: The coefficients of the characteristic polynomial multiplied with the identity matrix represented by (transformed) ring elements obtained from the adjunct of the characteristic matrix. (Contributed by AV, 21-Nov-2019) (Proof shortened by AV, 8-Dec-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses chcoeffeq.a A = N Mat R
chcoeffeq.b B = Base A
chcoeffeq.p P = Poly 1 R
chcoeffeq.y Y = N Mat P
chcoeffeq.r × ˙ = Y
chcoeffeq.s - ˙ = - Y
chcoeffeq.0 0 ˙ = 0 Y
chcoeffeq.t T = N matToPolyMat R
chcoeffeq.c C = N CharPlyMat R
chcoeffeq.k K = C M
chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
chcoeffeq.w W = Base Y
chcoeffeq.1 1 ˙ = 1 A
chcoeffeq.m ˙ = A
chcoeffeq.u U = N cPolyMatToMat R
Assertion chcoeffeq N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 chcoeffeq.a A = N Mat R
2 chcoeffeq.b B = Base A
3 chcoeffeq.p P = Poly 1 R
4 chcoeffeq.y Y = N Mat P
5 chcoeffeq.r × ˙ = Y
6 chcoeffeq.s - ˙ = - Y
7 chcoeffeq.0 0 ˙ = 0 Y
8 chcoeffeq.t T = N matToPolyMat R
9 chcoeffeq.c C = N CharPlyMat R
10 chcoeffeq.k K = C M
11 chcoeffeq.g G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
12 chcoeffeq.w W = Base Y
13 chcoeffeq.1 1 ˙ = 1 A
14 chcoeffeq.m ˙ = A
15 chcoeffeq.u U = N cPolyMatToMat R
16 eqid N ConstPolyMat R = N ConstPolyMat R
17 eqid Y = Y
18 eqid 1 Y = 1 Y
19 eqid var 1 R = var 1 R
20 eqid var 1 R Y 1 Y - ˙ T M = var 1 R Y 1 Y - ˙ T M
21 eqid N maAdju P = N maAdju P
22 eqid Poly 1 A = Poly 1 A
23 eqid var 1 A = var 1 A
24 eqid Poly 1 A = Poly 1 A
25 eqid mulGrp Poly 1 A = mulGrp Poly 1 A
26 eqid N pMatToMatPoly R = N pMatToMatPoly R
27 1 2 3 4 8 5 6 7 11 16 17 18 19 20 21 12 22 23 24 25 15 26 cpmadumatpoly N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A
28 eqid mulGrp P = mulGrp P
29 eqid algSc P = algSc P
30 eqid K Y 1 Y = K Y 1 Y
31 1 2 3 4 19 28 17 18 29 9 10 30 13 14 8 12 22 23 24 25 26 cpmidpmat N Fin R CRing M B N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A
32 eqid N CharPlyMat R = N CharPlyMat R
33 1 2 32 3 4 19 8 6 17 18 20 21 5 cpmadurid N Fin R CRing M B var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N CharPlyMat R M Y 1 Y
34 9 fveq1i C M = N CharPlyMat R M
35 10 34 eqtri K = N CharPlyMat R M
36 35 a1i N Fin R CRing M B K = N CharPlyMat R M
37 36 eqcomd N Fin R CRing M B N CharPlyMat R M = K
38 37 oveq1d N Fin R CRing M B N CharPlyMat R M Y 1 Y = K Y 1 Y
39 33 38 eqtrd N Fin R CRing M B var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = K Y 1 Y
40 fveq2 var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = K Y 1 Y N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N pMatToMatPoly R K Y 1 Y
41 simpr N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A
42 41 adantr N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A
43 simpr N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A
44 42 43 eqeq12d N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N pMatToMatPoly R K Y 1 Y Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A
45 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 chcoeffeqlem N Fin R CRing M B s b B 0 s Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
46 45 adantr N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
47 46 adantr N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
48 44 47 sylbid N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N pMatToMatPoly R K Y 1 Y n 0 U G n = coe 1 K n ˙ 1 ˙
49 48 exp31 N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N pMatToMatPoly R K Y 1 Y n 0 U G n = coe 1 K n ˙ 1 ˙
50 49 com24 N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = N pMatToMatPoly R K Y 1 Y N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
51 40 50 syl5 N Fin R CRing M B s b B 0 s var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = K Y 1 Y N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
52 51 ex N Fin R CRing M B s b B 0 s var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = K Y 1 Y N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
53 52 com24 N Fin R CRing M B N pMatToMatPoly R K Y 1 Y = Poly 1 A n 0 coe 1 K n ˙ 1 ˙ Poly 1 A n mulGrp Poly 1 A var 1 A var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = K Y 1 Y s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
54 31 39 53 mp2d N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
55 54 impl N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A n 0 U G n = coe 1 K n ˙ 1 ˙
56 55 reximdva N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙
57 56 reximdva N Fin R CRing M B s b B 0 s N pMatToMatPoly R var 1 R Y 1 Y - ˙ T M × ˙ N maAdju P var 1 R Y 1 Y - ˙ T M = Poly 1 A n 0 U G n Poly 1 A n mulGrp Poly 1 A var 1 A s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙
58 27 57 mpd N Fin R CRing M B s b B 0 s n 0 U G n = coe 1 K n ˙ 1 ˙