Metamath Proof Explorer


Theorem chscllem4

Description: Lemma for chscl . (Contributed by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses chscl.1 φAC
chscl.2 φBC
chscl.3 φBA
chscl.4 φH:A+B
chscl.5 φHvu
chscl.6 F=nprojAHn
chscl.7 G=nprojBHn
Assertion chscllem4 φuA+B

Proof

Step Hyp Ref Expression
1 chscl.1 φAC
2 chscl.2 φBC
3 chscl.3 φBA
4 chscl.4 φH:A+B
5 chscl.5 φHvu
6 chscl.6 F=nprojAHn
7 chscl.7 G=nprojBHn
8 hlimf v:domv
9 ffun v:domvFunv
10 8 9 ax-mp Funv
11 funbrfv FunvHvuvH=u
12 10 5 11 mpsyl φvH=u
13 4 feqmptd φH=kHk
14 4 ffvelcdmda φkHkA+B
15 chsh ACAS
16 1 15 syl φAS
17 chsh BCBS
18 2 17 syl φBS
19 shsel ASBSHkA+BxAyBHk=x+y
20 16 18 19 syl2anc φHkA+BxAyBHk=x+y
21 20 biimpa φHkA+BxAyBHk=x+y
22 14 21 syldan φkxAyBHk=x+y
23 simp3 φkxAyBHk=x+yHk=x+y
24 simp1l φkxAyBHk=x+yφ
25 24 1 syl φkxAyBHk=x+yAC
26 24 2 syl φkxAyBHk=x+yBC
27 24 3 syl φkxAyBHk=x+yBA
28 24 4 syl φkxAyBHk=x+yH:A+B
29 24 5 syl φkxAyBHk=x+yHvu
30 simp1r φkxAyBHk=x+yk
31 simp2l φkxAyBHk=x+yxA
32 simp2r φkxAyBHk=x+yyB
33 25 26 27 28 29 6 30 31 32 23 chscllem3 φkxAyBHk=x+yx=Fk
34 chsscon2 BCACBAAB
35 2 1 34 syl2anc φBAAB
36 3 35 mpbid φAB
37 24 36 syl φkxAyBHk=x+yAB
38 shscom ASBSA+B=B+A
39 16 18 38 syl2anc φA+B=B+A
40 39 feq3d φH:A+BH:B+A
41 4 40 mpbid φH:B+A
42 24 41 syl φkxAyBHk=x+yH:B+A
43 shss ASA
44 16 43 syl φA
45 24 44 syl φkxAyBHk=x+yA
46 45 31 sseldd φkxAyBHk=x+yx
47 shss BSB
48 18 47 syl φB
49 24 48 syl φkxAyBHk=x+yB
50 49 32 sseldd φkxAyBHk=x+yy
51 ax-hvcom xyx+y=y+x
52 46 50 51 syl2anc φkxAyBHk=x+yx+y=y+x
53 23 52 eqtrd φkxAyBHk=x+yHk=y+x
54 26 25 37 42 29 7 30 32 31 53 chscllem3 φkxAyBHk=x+yy=Gk
55 33 54 oveq12d φkxAyBHk=x+yx+y=Fk+Gk
56 23 55 eqtrd φkxAyBHk=x+yHk=Fk+Gk
57 56 3exp φkxAyBHk=x+yHk=Fk+Gk
58 57 rexlimdvv φkxAyBHk=x+yHk=Fk+Gk
59 22 58 mpd φkHk=Fk+Gk
60 59 mpteq2dva φkHk=kFk+Gk
61 13 60 eqtrd φH=kFk+Gk
62 1 2 3 4 5 6 chscllem1 φF:A
63 62 44 fssd φF:
64 2 1 36 41 5 7 chscllem1 φG:B
65 64 48 fssd φG:
66 1 2 3 4 5 6 chscllem2 φFdomv
67 funfvbrb FunvFdomvFvvF
68 10 67 ax-mp FdomvFvvF
69 66 68 sylib φFvvF
70 2 1 36 41 5 7 chscllem2 φGdomv
71 funfvbrb FunvGdomvGvvG
72 10 71 ax-mp GdomvGvvG
73 70 72 sylib φGvvG
74 eqid kFk+Gk=kFk+Gk
75 63 65 69 73 74 hlimadd φkFk+GkvvF+vG
76 61 75 eqbrtrd φHvvF+vG
77 funbrfv FunvHvvF+vGvH=vF+vG
78 10 76 77 mpsyl φvH=vF+vG
79 12 78 eqtr3d φu=vF+vG
80 fvex vFV
81 80 chlimi ACF:AFvvFvFA
82 1 62 69 81 syl3anc φvFA
83 fvex vGV
84 83 chlimi BCG:BGvvGvGB
85 2 64 73 84 syl3anc φvGB
86 shsva ASBSvFAvGBvF+vGA+B
87 16 18 86 syl2anc φvFAvGBvF+vGA+B
88 82 85 87 mp2and φvF+vGA+B
89 79 88 eqeltrd φuA+B