Metamath Proof Explorer


Theorem clim2prod

Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses clim2prod.1 Z=M
clim2prod.2 φNZ
clim2prod.3 φkZFk
clim2prod.4 φseqN+1×FA
Assertion clim2prod φseqM×FseqM×FNA

Proof

Step Hyp Ref Expression
1 clim2prod.1 Z=M
2 clim2prod.2 φNZ
3 clim2prod.3 φkZFk
4 clim2prod.4 φseqN+1×FA
5 eqid N+1=N+1
6 uzssz M
7 1 6 eqsstri Z
8 7 2 sselid φN
9 8 peano2zd φN+1
10 2 1 eleqtrdi φNM
11 eluzel2 NMM
12 10 11 syl φM
13 1 12 3 prodf φseqM×F:Z
14 13 2 ffvelcdmd φseqM×FN
15 seqex seqM×FV
16 15 a1i φseqM×FV
17 peano2uz NMN+1M
18 uzss N+1MN+1M
19 10 17 18 3syl φN+1M
20 19 1 sseqtrrdi φN+1Z
21 20 sselda φkN+1kZ
22 21 3 syldan φkN+1Fk
23 5 9 22 prodf φseqN+1×F:N+1
24 23 ffvelcdmda φkN+1seqN+1×Fk
25 fveq2 x=N+1seqM×Fx=seqM×FN+1
26 fveq2 x=N+1seqN+1×Fx=seqN+1×FN+1
27 26 oveq2d x=N+1seqM×FNseqN+1×Fx=seqM×FNseqN+1×FN+1
28 25 27 eqeq12d x=N+1seqM×Fx=seqM×FNseqN+1×FxseqM×FN+1=seqM×FNseqN+1×FN+1
29 28 imbi2d x=N+1φseqM×Fx=seqM×FNseqN+1×FxφseqM×FN+1=seqM×FNseqN+1×FN+1
30 fveq2 x=nseqM×Fx=seqM×Fn
31 fveq2 x=nseqN+1×Fx=seqN+1×Fn
32 31 oveq2d x=nseqM×FNseqN+1×Fx=seqM×FNseqN+1×Fn
33 30 32 eqeq12d x=nseqM×Fx=seqM×FNseqN+1×FxseqM×Fn=seqM×FNseqN+1×Fn
34 33 imbi2d x=nφseqM×Fx=seqM×FNseqN+1×FxφseqM×Fn=seqM×FNseqN+1×Fn
35 fveq2 x=n+1seqM×Fx=seqM×Fn+1
36 fveq2 x=n+1seqN+1×Fx=seqN+1×Fn+1
37 36 oveq2d x=n+1seqM×FNseqN+1×Fx=seqM×FNseqN+1×Fn+1
38 35 37 eqeq12d x=n+1seqM×Fx=seqM×FNseqN+1×FxseqM×Fn+1=seqM×FNseqN+1×Fn+1
39 38 imbi2d x=n+1φseqM×Fx=seqM×FNseqN+1×FxφseqM×Fn+1=seqM×FNseqN+1×Fn+1
40 fveq2 x=kseqM×Fx=seqM×Fk
41 fveq2 x=kseqN+1×Fx=seqN+1×Fk
42 41 oveq2d x=kseqM×FNseqN+1×Fx=seqM×FNseqN+1×Fk
43 40 42 eqeq12d x=kseqM×Fx=seqM×FNseqN+1×FxseqM×Fk=seqM×FNseqN+1×Fk
44 43 imbi2d x=kφseqM×Fx=seqM×FNseqN+1×FxφseqM×Fk=seqM×FNseqN+1×Fk
45 10 adantr φN+1NM
46 seqp1 NMseqM×FN+1=seqM×FNFN+1
47 45 46 syl φN+1seqM×FN+1=seqM×FNFN+1
48 seq1 N+1seqN+1×FN+1=FN+1
49 48 adantl φN+1seqN+1×FN+1=FN+1
50 49 oveq2d φN+1seqM×FNseqN+1×FN+1=seqM×FNFN+1
51 47 50 eqtr4d φN+1seqM×FN+1=seqM×FNseqN+1×FN+1
52 51 expcom N+1φseqM×FN+1=seqM×FNseqN+1×FN+1
53 19 sselda φnN+1nM
54 seqp1 nMseqM×Fn+1=seqM×FnFn+1
55 53 54 syl φnN+1seqM×Fn+1=seqM×FnFn+1
56 55 adantr φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×Fn+1=seqM×FnFn+1
57 oveq1 seqM×Fn=seqM×FNseqN+1×FnseqM×FnFn+1=seqM×FNseqN+1×FnFn+1
58 57 adantl φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×FnFn+1=seqM×FNseqN+1×FnFn+1
59 14 adantr φnN+1seqM×FN
60 23 ffvelcdmda φnN+1seqN+1×Fn
61 peano2uz nMn+1M
62 61 1 eleqtrrdi nMn+1Z
63 53 62 syl φnN+1n+1Z
64 3 ralrimiva φkZFk
65 fveq2 k=n+1Fk=Fn+1
66 65 eleq1d k=n+1FkFn+1
67 66 rspcv n+1ZkZFkFn+1
68 64 67 mpan9 φn+1ZFn+1
69 63 68 syldan φnN+1Fn+1
70 59 60 69 mulassd φnN+1seqM×FNseqN+1×FnFn+1=seqM×FNseqN+1×FnFn+1
71 70 adantr φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×FNseqN+1×FnFn+1=seqM×FNseqN+1×FnFn+1
72 seqp1 nN+1seqN+1×Fn+1=seqN+1×FnFn+1
73 72 adantl φnN+1seqN+1×Fn+1=seqN+1×FnFn+1
74 73 oveq2d φnN+1seqM×FNseqN+1×Fn+1=seqM×FNseqN+1×FnFn+1
75 74 adantr φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×FNseqN+1×Fn+1=seqM×FNseqN+1×FnFn+1
76 71 75 eqtr4d φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×FNseqN+1×FnFn+1=seqM×FNseqN+1×Fn+1
77 56 58 76 3eqtrd φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×Fn+1=seqM×FNseqN+1×Fn+1
78 77 exp31 φnN+1seqM×Fn=seqM×FNseqN+1×FnseqM×Fn+1=seqM×FNseqN+1×Fn+1
79 78 com12 nN+1φseqM×Fn=seqM×FNseqN+1×FnseqM×Fn+1=seqM×FNseqN+1×Fn+1
80 79 a2d nN+1φseqM×Fn=seqM×FNseqN+1×FnφseqM×Fn+1=seqM×FNseqN+1×Fn+1
81 29 34 39 44 52 80 uzind4 kN+1φseqM×Fk=seqM×FNseqN+1×Fk
82 81 impcom φkN+1seqM×Fk=seqM×FNseqN+1×Fk
83 5 9 4 14 16 24 82 climmulc2 φseqM×FseqM×FNA