Metamath Proof Explorer


Theorem climinf2mpt

Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2mpt.p kφ
climinf2mpt.j jφ
climinf2mpt.m φM
climinf2mpt.z Z=M
climinf2mpt.b φkZB
climinf2mpt.c k=jB=C
climinf2mpt.l φkZj=k+1CB
climinf2mpt.e φkZBdom
Assertion climinf2mpt φkZBsuprankZB*<

Proof

Step Hyp Ref Expression
1 climinf2mpt.p kφ
2 climinf2mpt.j jφ
3 climinf2mpt.m φM
4 climinf2mpt.z Z=M
5 climinf2mpt.b φkZB
6 climinf2mpt.c k=jB=C
7 climinf2mpt.l φkZj=k+1CB
8 climinf2mpt.e φkZBdom
9 nfv iφ
10 nfcv _ikZB
11 1 5 fmptd2f φkZB:Z
12 nfv kiZ
13 1 12 nfan kφiZ
14 nfv ki+1/jCi/jC
15 13 14 nfim kφiZi+1/jCi/jC
16 eleq1 k=ikZiZ
17 16 anbi2d k=iφkZφiZ
18 oveq1 k=ik+1=i+1
19 18 csbeq1d k=ik+1/jC=i+1/jC
20 eqidd k=iB=B
21 csbcow k/jj/kB=k/kB
22 csbid k/kB=B
23 21 22 eqtr2i B=k/jj/kB
24 nfcv _jB
25 nfcv _kC
26 24 25 6 cbvcsbw j/kB=j/jC
27 csbid j/jC=C
28 26 27 eqtri j/kB=C
29 28 csbeq2i k/jj/kB=k/jC
30 23 29 eqtri B=k/jC
31 30 a1i k=iB=k/jC
32 csbeq1 k=ik/jC=i/jC
33 20 31 32 3eqtrd k=iB=i/jC
34 19 33 breq12d k=ik+1/jCBi+1/jCi/jC
35 17 34 imbi12d k=iφkZk+1/jCBφiZi+1/jCi/jC
36 simpl φkZφ
37 simpr φkZkZ
38 eqidd φkZk+1=k+1
39 nfv jkZ
40 nfv jk+1=k+1
41 2 39 40 nf3an jφkZk+1=k+1
42 nfcsb1v _jk+1/jC
43 nfcv _j
44 42 43 24 nfbr jk+1/jCB
45 41 44 nfim jφkZk+1=k+1k+1/jCB
46 ovex k+1V
47 eqeq1 j=k+1j=k+1k+1=k+1
48 47 3anbi3d j=k+1φkZj=k+1φkZk+1=k+1
49 csbeq1a j=k+1C=k+1/jC
50 49 breq1d j=k+1CBk+1/jCB
51 48 50 imbi12d j=k+1φkZj=k+1CBφkZk+1=k+1k+1/jCB
52 45 46 51 7 vtoclf φkZk+1=k+1k+1/jCB
53 36 37 38 52 syl3anc φkZk+1/jCB
54 15 35 53 chvarfv φiZi+1/jCi/jC
55 24 25 6 cbvcsbw i+1/kB=i+1/jC
56 55 a1i φiZi+1/kB=i+1/jC
57 eqidd φiZi/jC=i/jC
58 56 57 breq12d φiZi+1/kBi/jCi+1/jCi/jC
59 54 58 mpbird φiZi+1/kBi/jC
60 4 peano2uzs iZi+1Z
61 60 adantl φiZi+1Z
62 nfv ki+1Z
63 1 62 nfan kφi+1Z
64 nfcv _ki+1
65 64 nfcsb1 _ki+1/kB
66 65 nfel1 ki+1/kB
67 63 66 nfim kφi+1Zi+1/kB
68 ovex i+1V
69 eleq1 k=i+1kZi+1Z
70 69 anbi2d k=i+1φkZφi+1Z
71 csbeq1a k=i+1B=i+1/kB
72 71 eleq1d k=i+1Bi+1/kB
73 70 72 imbi12d k=i+1φkZBφi+1Zi+1/kB
74 67 68 73 5 vtoclf φi+1Zi+1/kB
75 60 74 sylan2 φiZi+1/kB
76 eqid kZB=kZB
77 64 65 71 76 fvmptf i+1Zi+1/kBkZBi+1=i+1/kB
78 61 75 77 syl2anc φiZkZBi+1=i+1/kB
79 simpr φiZiZ
80 nfv jiZ
81 2 80 nfan jφiZ
82 nfcsb1v _ji/jC
83 nfcv _j
84 82 83 nfel ji/jC
85 81 84 nfim jφiZi/jC
86 eleq1 j=ijZiZ
87 86 anbi2d j=iφjZφiZ
88 csbeq1a j=iC=i/jC
89 88 eleq1d j=iCi/jC
90 87 89 imbi12d j=iφjZCφiZi/jC
91 nfv kjZ
92 1 91 nfan kφjZ
93 nfv kC
94 92 93 nfim kφjZC
95 eleq1 k=jkZjZ
96 95 anbi2d k=jφkZφjZ
97 6 eleq1d k=jBC
98 96 97 imbi12d k=jφkZBφjZC
99 94 98 5 chvarfv φjZC
100 85 90 99 chvarfv φiZi/jC
101 nfcv _ki
102 nfcv _ki/jC
103 101 102 33 76 fvmptf iZi/jCkZBi=i/jC
104 79 100 103 syl2anc φiZkZBi=i/jC
105 78 104 breq12d φiZkZBi+1kZBii+1/kBi/jC
106 59 105 mpbird φiZkZBi+1kZBi
107 104 100 eqeltrd φiZkZBi
108 107 recnd φiZkZBi
109 108 ralrimiva φiZkZBi
110 10 4 climbddf MkZBdomiZkZBixiZkZBix
111 3 8 109 110 syl3anc φxiZkZBix
112 9 107 rexabsle2 φxiZkZBixxiZkZBixxiZxkZBi
113 111 112 mpbid φxiZkZBixxiZxkZBi
114 113 simprd φxiZxkZBi
115 9 10 4 3 11 106 114 climinf2 φkZBsuprankZB*<