Description: The set of closed walks on vertex X of length 1 in a graph G as words over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwwlknon1.v | |
|
clwwlknon1.c | |
||
clwwlknon1.e | |
||
Assertion | clwwlknon1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon1.v | |
|
2 | clwwlknon1.c | |
|
3 | clwwlknon1.e | |
|
4 | 2 | oveqi | |
5 | 4 | a1i | |
6 | clwwlknon | |
|
7 | 6 | a1i | |
8 | clwwlkn1 | |
|
9 | 8 | anbi1i | |
10 | 1 | eqcomi | |
11 | 10 | wrdeqi | |
12 | 11 | eleq2i | |
13 | 12 | biimpi | |
14 | 13 | 3ad2ant2 | |
15 | 14 | ad2antrl | |
16 | 14 | adantr | |
17 | simpl1 | |
|
18 | simpr | |
|
19 | 16 17 18 | 3jca | |
20 | 19 | adantl | |
21 | wrdl1s1 | |
|
22 | 21 | adantr | |
23 | 20 22 | mpbird | |
24 | sneq | |
|
25 | 3 | eqcomi | |
26 | 25 | a1i | |
27 | 24 26 | eleq12d | |
28 | 27 | biimpd | |
29 | 28 | a1i | |
30 | 29 | com13 | |
31 | 30 | 3ad2ant3 | |
32 | 31 | imp | |
33 | 32 | impcom | |
34 | 15 23 33 | jca32 | |
35 | fveq2 | |
|
36 | s1len | |
|
37 | 35 36 | eqtrdi | |
38 | 37 | ad2antrl | |
39 | 38 | adantl | |
40 | 1 | wrdeqi | |
41 | 40 | eleq2i | |
42 | 41 | biimpi | |
43 | 42 | ad2antrl | |
44 | fveq1 | |
|
45 | s1fv | |
|
46 | 44 45 | sylan9eq | |
47 | 46 | eqcomd | |
48 | 47 | sneqd | |
49 | 3 | a1i | |
50 | 48 49 | eleq12d | |
51 | 50 | biimpd | |
52 | 51 | impancom | |
53 | 52 | adantl | |
54 | 53 | impcom | |
55 | 39 43 54 | 3jca | |
56 | 46 | ex | |
57 | 56 | ad2antrl | |
58 | 57 | impcom | |
59 | 55 58 | jca | |
60 | 34 59 | impbida | |
61 | 9 60 | bitrid | |
62 | 61 | rabbidva2 | |
63 | 5 7 62 | 3eqtrd | |