Metamath Proof Explorer


Theorem clwwlknon1

Description: The set of closed walks on vertex X of length 1 in a graph G as words over the set of vertices. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v V=VtxG
clwwlknon1.c C=ClWWalksNOnG
clwwlknon1.e E=EdgG
Assertion clwwlknon1 XVXC1=wWordV|w=⟨“X”⟩XE

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V=VtxG
2 clwwlknon1.c C=ClWWalksNOnG
3 clwwlknon1.e E=EdgG
4 2 oveqi XC1=XClWWalksNOnG1
5 4 a1i XVXC1=XClWWalksNOnG1
6 clwwlknon XClWWalksNOnG1=w1ClWWalksNG|w0=X
7 6 a1i XVXClWWalksNOnG1=w1ClWWalksNG|w0=X
8 clwwlkn1 w1ClWWalksNGw=1wWordVtxGw0EdgG
9 8 anbi1i w1ClWWalksNGw0=Xw=1wWordVtxGw0EdgGw0=X
10 1 eqcomi VtxG=V
11 10 wrdeqi WordVtxG=WordV
12 11 eleq2i wWordVtxGwWordV
13 12 biimpi wWordVtxGwWordV
14 13 3ad2ant2 w=1wWordVtxGw0EdgGwWordV
15 14 ad2antrl XVw=1wWordVtxGw0EdgGw0=XwWordV
16 14 adantr w=1wWordVtxGw0EdgGw0=XwWordV
17 simpl1 w=1wWordVtxGw0EdgGw0=Xw=1
18 simpr w=1wWordVtxGw0EdgGw0=Xw0=X
19 16 17 18 3jca w=1wWordVtxGw0EdgGw0=XwWordVw=1w0=X
20 19 adantl XVw=1wWordVtxGw0EdgGw0=XwWordVw=1w0=X
21 wrdl1s1 XVw=⟨“X”⟩wWordVw=1w0=X
22 21 adantr XVw=1wWordVtxGw0EdgGw0=Xw=⟨“X”⟩wWordVw=1w0=X
23 20 22 mpbird XVw=1wWordVtxGw0EdgGw0=Xw=⟨“X”⟩
24 sneq w0=Xw0=X
25 3 eqcomi EdgG=E
26 25 a1i w0=XEdgG=E
27 24 26 eleq12d w0=Xw0EdgGXE
28 27 biimpd w0=Xw0EdgGXE
29 28 a1i XVw0=Xw0EdgGXE
30 29 com13 w0EdgGw0=XXVXE
31 30 3ad2ant3 w=1wWordVtxGw0EdgGw0=XXVXE
32 31 imp w=1wWordVtxGw0EdgGw0=XXVXE
33 32 impcom XVw=1wWordVtxGw0EdgGw0=XXE
34 15 23 33 jca32 XVw=1wWordVtxGw0EdgGw0=XwWordVw=⟨“X”⟩XE
35 fveq2 w=⟨“X”⟩w=⟨“X”⟩
36 s1len ⟨“X”⟩=1
37 35 36 eqtrdi w=⟨“X”⟩w=1
38 37 ad2antrl wWordVw=⟨“X”⟩XEw=1
39 38 adantl XVwWordVw=⟨“X”⟩XEw=1
40 1 wrdeqi WordV=WordVtxG
41 40 eleq2i wWordVwWordVtxG
42 41 biimpi wWordVwWordVtxG
43 42 ad2antrl XVwWordVw=⟨“X”⟩XEwWordVtxG
44 fveq1 w=⟨“X”⟩w0=⟨“X”⟩0
45 s1fv XV⟨“X”⟩0=X
46 44 45 sylan9eq w=⟨“X”⟩XVw0=X
47 46 eqcomd w=⟨“X”⟩XVX=w0
48 47 sneqd w=⟨“X”⟩XVX=w0
49 3 a1i w=⟨“X”⟩XVE=EdgG
50 48 49 eleq12d w=⟨“X”⟩XVXEw0EdgG
51 50 biimpd w=⟨“X”⟩XVXEw0EdgG
52 51 impancom w=⟨“X”⟩XEXVw0EdgG
53 52 adantl wWordVw=⟨“X”⟩XEXVw0EdgG
54 53 impcom XVwWordVw=⟨“X”⟩XEw0EdgG
55 39 43 54 3jca XVwWordVw=⟨“X”⟩XEw=1wWordVtxGw0EdgG
56 46 ex w=⟨“X”⟩XVw0=X
57 56 ad2antrl wWordVw=⟨“X”⟩XEXVw0=X
58 57 impcom XVwWordVw=⟨“X”⟩XEw0=X
59 55 58 jca XVwWordVw=⟨“X”⟩XEw=1wWordVtxGw0EdgGw0=X
60 34 59 impbida XVw=1wWordVtxGw0EdgGw0=XwWordVw=⟨“X”⟩XE
61 9 60 bitrid XVw1ClWWalksNGw0=XwWordVw=⟨“X”⟩XE
62 61 rabbidva2 XVw1ClWWalksNG|w0=X=wWordV|w=⟨“X”⟩XE
63 5 7 62 3eqtrd XVXC1=wWordV|w=⟨“X”⟩XE