Description: If the uniform set of a complete metric space is the uniform structure generated by its metric, then it is a complete uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cmetcusp1.x | |
|
cmetcusp1.d | |
||
cmetcusp1.u | |
||
Assertion | cmetcusp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetcusp1.x | |
|
2 | cmetcusp1.d | |
|
3 | cmetcusp1.u | |
|
4 | cmsms | |
|
5 | msxms | |
|
6 | 4 5 | syl | |
7 | 1 2 3 | xmsusp | |
8 | 6 7 | syl3an2 | |
9 | simpl3 | |
|
10 | 9 | fveq2d | |
11 | 10 | eleq2d | |
12 | simpl1 | |
|
13 | 1 2 | cmscmet | |
14 | cmetmet | |
|
15 | metxmet | |
|
16 | 13 14 15 | 3syl | |
17 | 16 | 3ad2ant2 | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | cfilucfil4 | |
|
21 | 12 18 19 20 | syl3anc | |
22 | 11 21 | bitrd | |
23 | eqid | |
|
24 | 23 | iscmet | |
25 | 24 | simprbi | |
26 | 13 25 | syl | |
27 | eqid | |
|
28 | 27 1 2 | xmstopn | |
29 | 6 28 | syl | |
30 | 29 | oveq1d | |
31 | 30 | neeq1d | |
32 | 31 | ralbidv | |
33 | 26 32 | mpbird | |
34 | 33 | r19.21bi | |
35 | 34 | ex | |
36 | 35 | 3ad2ant2 | |
37 | 36 | adantr | |
38 | 22 37 | sylbid | |
39 | 38 | ralrimiva | |
40 | 1 3 27 | iscusp2 | |
41 | 8 39 40 | sylanbrc | |