Metamath Proof Explorer


Theorem cnextfvval

Description: The value of the continuous extension of a given function F at a point X . (Contributed by Thierry Arnoux, 21-Dec-2017)

Ref Expression
Hypotheses cnextf.1 C=J
cnextf.2 B=K
cnextf.3 φJTop
cnextf.4 φKHaus
cnextf.5 φF:AB
cnextf.a φAC
cnextf.6 φclsJA=C
cnextf.7 φxCKfLimfneiJx𝑡AF
Assertion cnextfvval φXCJCnExtKFX=KfLimfneiJX𝑡AF

Proof

Step Hyp Ref Expression
1 cnextf.1 C=J
2 cnextf.2 B=K
3 cnextf.3 φJTop
4 cnextf.4 φKHaus
5 cnextf.5 φF:AB
6 cnextf.a φAC
7 cnextf.6 φclsJA=C
8 cnextf.7 φxCKfLimfneiJx𝑡AF
9 3 adantr φXCJTop
10 4 adantr φXCKHaus
11 5 adantr φXCF:AB
12 6 adantr φXCAC
13 1 2 cnextfun JTopKHausF:ABACFunJCnExtKF
14 9 10 11 12 13 syl22anc φXCFunJCnExtKF
15 7 eleq2d φXclsJAXC
16 15 biimpar φXCXclsJA
17 fvex KfLimfneiJX𝑡AFV
18 17 uniex KfLimfneiJX𝑡AFV
19 18 snid KfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
20 sneq x=Xx=X
21 20 fveq2d x=XneiJx=neiJX
22 21 oveq1d x=XneiJx𝑡A=neiJX𝑡A
23 22 oveq2d x=XKfLimfneiJx𝑡A=KfLimfneiJX𝑡A
24 23 fveq1d x=XKfLimfneiJx𝑡AF=KfLimfneiJX𝑡AF
25 24 breq1d x=XKfLimfneiJx𝑡AF1𝑜KfLimfneiJX𝑡AF1𝑜
26 25 imbi2d x=XφKfLimfneiJx𝑡AF1𝑜φKfLimfneiJX𝑡AF1𝑜
27 4 adantr φxCKHaus
28 3 adantr φxCJTop
29 1 toptopon JTopJTopOnC
30 28 29 sylib φxCJTopOnC
31 6 adantr φxCAC
32 simpr φxCxC
33 7 eleq2d φxclsJAxC
34 33 biimpar φxCxclsJA
35 trnei JTopOnCACxCxclsJAneiJx𝑡AFilA
36 35 biimpa JTopOnCACxCxclsJAneiJx𝑡AFilA
37 30 31 32 34 36 syl31anc φxCneiJx𝑡AFilA
38 5 adantr φxCF:AB
39 2 hausflf2 KHausneiJx𝑡AFilAF:ABKfLimfneiJx𝑡AFKfLimfneiJx𝑡AF1𝑜
40 27 37 38 8 39 syl31anc φxCKfLimfneiJx𝑡AF1𝑜
41 40 expcom xCφKfLimfneiJx𝑡AF1𝑜
42 26 41 vtoclga XCφKfLimfneiJX𝑡AF1𝑜
43 42 impcom φXCKfLimfneiJX𝑡AF1𝑜
44 en1b KfLimfneiJX𝑡AF1𝑜KfLimfneiJX𝑡AF=KfLimfneiJX𝑡AF
45 43 44 sylib φXCKfLimfneiJX𝑡AF=KfLimfneiJX𝑡AF
46 19 45 eleqtrrid φXCKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
47 nfiu1 _xxclsJAx×KfLimfneiJx𝑡AF
48 47 nfel2 xXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AF
49 nfv xXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
50 48 49 nfbi xXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
51 opeq1 x=XxKfLimfneiJX𝑡AF=XKfLimfneiJX𝑡AF
52 51 eleq1d x=XxKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AF
53 eleq1 x=XxclsJAXclsJA
54 24 eleq2d x=XKfLimfneiJX𝑡AFKfLimfneiJx𝑡AFKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
55 53 54 anbi12d x=XxclsJAKfLimfneiJX𝑡AFKfLimfneiJx𝑡AFXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
56 52 55 bibi12d x=XxKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFxclsJAKfLimfneiJX𝑡AFKfLimfneiJx𝑡AFXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
57 opeliunxp xKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFxclsJAKfLimfneiJX𝑡AFKfLimfneiJx𝑡AF
58 50 56 57 vtoclg1f XCXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
59 58 adantl φXCXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AFXclsJAKfLimfneiJX𝑡AFKfLimfneiJX𝑡AF
60 16 46 59 mpbir2and φXCXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AF
61 df-br XJCnExtKFKfLimfneiJX𝑡AFXKfLimfneiJX𝑡AFJCnExtKF
62 haustop KHausKTop
63 4 62 syl φKTop
64 63 adantr φXCKTop
65 1 2 cnextfval JTopKTopF:ABACJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
66 9 64 11 12 65 syl22anc φXCJCnExtKF=xclsJAx×KfLimfneiJx𝑡AF
67 66 eleq2d φXCXKfLimfneiJX𝑡AFJCnExtKFXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AF
68 61 67 bitrid φXCXJCnExtKFKfLimfneiJX𝑡AFXKfLimfneiJX𝑡AFxclsJAx×KfLimfneiJx𝑡AF
69 60 68 mpbird φXCXJCnExtKFKfLimfneiJX𝑡AF
70 funbrfv FunJCnExtKFXJCnExtKFKfLimfneiJX𝑡AFJCnExtKFX=KfLimfneiJX𝑡AF
71 14 69 70 sylc φXCJCnExtKFX=KfLimfneiJX𝑡AF