Description: The value of the continuous extension of a given function F at a point X . (Contributed by Thierry Arnoux, 21-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnextf.1 | |
|
cnextf.2 | |
||
cnextf.3 | |
||
cnextf.4 | |
||
cnextf.5 | |
||
cnextf.a | |
||
cnextf.6 | |
||
cnextf.7 | |
||
Assertion | cnextfvval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnextf.1 | |
|
2 | cnextf.2 | |
|
3 | cnextf.3 | |
|
4 | cnextf.4 | |
|
5 | cnextf.5 | |
|
6 | cnextf.a | |
|
7 | cnextf.6 | |
|
8 | cnextf.7 | |
|
9 | 3 | adantr | |
10 | 4 | adantr | |
11 | 5 | adantr | |
12 | 6 | adantr | |
13 | 1 2 | cnextfun | |
14 | 9 10 11 12 13 | syl22anc | |
15 | 7 | eleq2d | |
16 | 15 | biimpar | |
17 | fvex | |
|
18 | 17 | uniex | |
19 | 18 | snid | |
20 | sneq | |
|
21 | 20 | fveq2d | |
22 | 21 | oveq1d | |
23 | 22 | oveq2d | |
24 | 23 | fveq1d | |
25 | 24 | breq1d | |
26 | 25 | imbi2d | |
27 | 4 | adantr | |
28 | 3 | adantr | |
29 | 1 | toptopon | |
30 | 28 29 | sylib | |
31 | 6 | adantr | |
32 | simpr | |
|
33 | 7 | eleq2d | |
34 | 33 | biimpar | |
35 | trnei | |
|
36 | 35 | biimpa | |
37 | 30 31 32 34 36 | syl31anc | |
38 | 5 | adantr | |
39 | 2 | hausflf2 | |
40 | 27 37 38 8 39 | syl31anc | |
41 | 40 | expcom | |
42 | 26 41 | vtoclga | |
43 | 42 | impcom | |
44 | en1b | |
|
45 | 43 44 | sylib | |
46 | 19 45 | eleqtrrid | |
47 | nfiu1 | |
|
48 | 47 | nfel2 | |
49 | nfv | |
|
50 | 48 49 | nfbi | |
51 | opeq1 | |
|
52 | 51 | eleq1d | |
53 | eleq1 | |
|
54 | 24 | eleq2d | |
55 | 53 54 | anbi12d | |
56 | 52 55 | bibi12d | |
57 | opeliunxp | |
|
58 | 50 56 57 | vtoclg1f | |
59 | 58 | adantl | |
60 | 16 46 59 | mpbir2and | |
61 | df-br | |
|
62 | haustop | |
|
63 | 4 62 | syl | |
64 | 63 | adantr | |
65 | 1 2 | cnextfval | |
66 | 9 64 11 12 65 | syl22anc | |
67 | 66 | eleq2d | |
68 | 61 67 | bitrid | |
69 | 60 68 | mpbird | |
70 | funbrfv | |
|
71 | 14 69 70 | sylc | |