| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptk1p.j |
|
| 2 |
|
cnmptk1p.k |
|
| 3 |
|
cnmptk1p.l |
|
| 4 |
|
cnmptk1p.n |
|
| 5 |
|
cnmptk2.a |
|
| 6 |
|
nffvmpt1 |
|
| 7 |
|
nfcv |
|
| 8 |
6 7
|
nffv |
|
| 9 |
|
nfcv |
|
| 10 |
|
nfmpt1 |
|
| 11 |
9 10
|
nfmpt |
|
| 12 |
|
nfcv |
|
| 13 |
11 12
|
nffv |
|
| 14 |
|
nfcv |
|
| 15 |
13 14
|
nffv |
|
| 16 |
|
nfcv |
|
| 17 |
|
nfcv |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
fveq1d |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
sylan9eq |
|
| 22 |
8 15 16 17 21
|
cbvmpo |
|
| 23 |
|
simplr |
|
| 24 |
|
nllytop |
|
| 25 |
4 24
|
syl |
|
| 26 |
|
topontop |
|
| 27 |
3 26
|
syl |
|
| 28 |
|
eqid |
|
| 29 |
28
|
xkotopon |
|
| 30 |
25 27 29
|
syl2anc |
|
| 31 |
|
cnf2 |
|
| 32 |
1 30 5 31
|
syl3anc |
|
| 33 |
32
|
fvmptelcdm |
|
| 34 |
33
|
adantr |
|
| 35 |
|
eqid |
|
| 36 |
35
|
fvmpt2 |
|
| 37 |
23 34 36
|
syl2anc |
|
| 38 |
37
|
fveq1d |
|
| 39 |
|
simpr |
|
| 40 |
2
|
adantr |
|
| 41 |
3
|
adantr |
|
| 42 |
|
cnf2 |
|
| 43 |
40 41 33 42
|
syl3anc |
|
| 44 |
43
|
fvmptelcdm |
|
| 45 |
|
eqid |
|
| 46 |
45
|
fvmpt2 |
|
| 47 |
39 44 46
|
syl2anc |
|
| 48 |
38 47
|
eqtrd |
|
| 49 |
48
|
3impa |
|
| 50 |
49
|
mpoeq3dva |
|
| 51 |
22 50
|
eqtrid |
|
| 52 |
1 2
|
cnmpt1st |
|
| 53 |
1 2 52 5
|
cnmpt21f |
|
| 54 |
1 2
|
cnmpt2nd |
|
| 55 |
|
eqid |
|
| 56 |
|
toponuni |
|
| 57 |
2 56
|
syl |
|
| 58 |
|
mpoeq12 |
|
| 59 |
55 57 58
|
sylancr |
|
| 60 |
|
eqid |
|
| 61 |
|
eqid |
|
| 62 |
60 61
|
xkofvcn |
|
| 63 |
4 27 62
|
syl2anc |
|
| 64 |
59 63
|
eqeltrd |
|
| 65 |
|
fveq1 |
|
| 66 |
|
fveq2 |
|
| 67 |
65 66
|
sylan9eq |
|
| 68 |
1 2 53 54 30 2 64 67
|
cnmpt22 |
|
| 69 |
51 68
|
eqeltrrd |
|