Step |
Hyp |
Ref |
Expression |
1 |
|
cnmptk1p.j |
|
2 |
|
cnmptk1p.k |
|
3 |
|
cnmptk1p.l |
|
4 |
|
cnmptk1p.n |
|
5 |
|
cnmptk2.a |
|
6 |
|
nffvmpt1 |
|
7 |
|
nfcv |
|
8 |
6 7
|
nffv |
|
9 |
|
nfcv |
|
10 |
|
nfmpt1 |
|
11 |
9 10
|
nfmpt |
|
12 |
|
nfcv |
|
13 |
11 12
|
nffv |
|
14 |
|
nfcv |
|
15 |
13 14
|
nffv |
|
16 |
|
nfcv |
|
17 |
|
nfcv |
|
18 |
|
fveq2 |
|
19 |
18
|
fveq1d |
|
20 |
|
fveq2 |
|
21 |
19 20
|
sylan9eq |
|
22 |
8 15 16 17 21
|
cbvmpo |
|
23 |
|
simplr |
|
24 |
|
nllytop |
|
25 |
4 24
|
syl |
|
26 |
|
topontop |
|
27 |
3 26
|
syl |
|
28 |
|
eqid |
|
29 |
28
|
xkotopon |
|
30 |
25 27 29
|
syl2anc |
|
31 |
|
cnf2 |
|
32 |
1 30 5 31
|
syl3anc |
|
33 |
32
|
fvmptelrn |
|
34 |
33
|
adantr |
|
35 |
|
eqid |
|
36 |
35
|
fvmpt2 |
|
37 |
23 34 36
|
syl2anc |
|
38 |
37
|
fveq1d |
|
39 |
|
simpr |
|
40 |
2
|
adantr |
|
41 |
3
|
adantr |
|
42 |
|
cnf2 |
|
43 |
40 41 33 42
|
syl3anc |
|
44 |
43
|
fvmptelrn |
|
45 |
|
eqid |
|
46 |
45
|
fvmpt2 |
|
47 |
39 44 46
|
syl2anc |
|
48 |
38 47
|
eqtrd |
|
49 |
48
|
3impa |
|
50 |
49
|
mpoeq3dva |
|
51 |
22 50
|
eqtrid |
|
52 |
1 2
|
cnmpt1st |
|
53 |
1 2 52 5
|
cnmpt21f |
|
54 |
1 2
|
cnmpt2nd |
|
55 |
|
eqid |
|
56 |
|
toponuni |
|
57 |
2 56
|
syl |
|
58 |
|
mpoeq12 |
|
59 |
55 57 58
|
sylancr |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
60 61
|
xkofvcn |
|
63 |
4 27 62
|
syl2anc |
|
64 |
59 63
|
eqeltrd |
|
65 |
|
fveq1 |
|
66 |
|
fveq2 |
|
67 |
65 66
|
sylan9eq |
|
68 |
1 2 53 54 30 2 64 67
|
cnmpt22 |
|
69 |
51 68
|
eqeltrrd |
|