Metamath Proof Explorer


Theorem cnmptk2

Description: The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptk1p.j φJTopOnX
cnmptk1p.k φKTopOnY
cnmptk1p.l φLTopOnZ
cnmptk1p.n φKN-Locally Comp
cnmptk2.a φxXyYAJCnL^koK
Assertion cnmptk2 φxX,yYAJ×tKCnL

Proof

Step Hyp Ref Expression
1 cnmptk1p.j φJTopOnX
2 cnmptk1p.k φKTopOnY
3 cnmptk1p.l φLTopOnZ
4 cnmptk1p.n φKN-Locally Comp
5 cnmptk2.a φxXyYAJCnL^koK
6 nffvmpt1 _xxXyYAw
7 nfcv _xk
8 6 7 nffv _xxXyYAwk
9 nfcv _yX
10 nfmpt1 _yyYA
11 9 10 nfmpt _yxXyYA
12 nfcv _yw
13 11 12 nffv _yxXyYAw
14 nfcv _yk
15 13 14 nffv _yxXyYAwk
16 nfcv _wxXyYAxy
17 nfcv _kxXyYAxy
18 fveq2 w=xxXyYAw=xXyYAx
19 18 fveq1d w=xxXyYAwk=xXyYAxk
20 fveq2 k=yxXyYAxk=xXyYAxy
21 19 20 sylan9eq w=xk=yxXyYAwk=xXyYAxy
22 8 15 16 17 21 cbvmpo wX,kYxXyYAwk=xX,yYxXyYAxy
23 simplr φxXyYxX
24 nllytop KN-Locally Comp KTop
25 4 24 syl φKTop
26 topontop LTopOnZLTop
27 3 26 syl φLTop
28 eqid L^koK=L^koK
29 28 xkotopon KTopLTopL^koKTopOnKCnL
30 25 27 29 syl2anc φL^koKTopOnKCnL
31 cnf2 JTopOnXL^koKTopOnKCnLxXyYAJCnL^koKxXyYA:XKCnL
32 1 30 5 31 syl3anc φxXyYA:XKCnL
33 32 fvmptelcdm φxXyYAKCnL
34 33 adantr φxXyYyYAKCnL
35 eqid xXyYA=xXyYA
36 35 fvmpt2 xXyYAKCnLxXyYAx=yYA
37 23 34 36 syl2anc φxXyYxXyYAx=yYA
38 37 fveq1d φxXyYxXyYAxy=yYAy
39 simpr φxXyYyY
40 2 adantr φxXKTopOnY
41 3 adantr φxXLTopOnZ
42 cnf2 KTopOnYLTopOnZyYAKCnLyYA:YZ
43 40 41 33 42 syl3anc φxXyYA:YZ
44 43 fvmptelcdm φxXyYAZ
45 eqid yYA=yYA
46 45 fvmpt2 yYAZyYAy=A
47 39 44 46 syl2anc φxXyYyYAy=A
48 38 47 eqtrd φxXyYxXyYAxy=A
49 48 3impa φxXyYxXyYAxy=A
50 49 mpoeq3dva φxX,yYxXyYAxy=xX,yYA
51 22 50 eqtrid φwX,kYxXyYAwk=xX,yYA
52 1 2 cnmpt1st φwX,kYwJ×tKCnJ
53 1 2 52 5 cnmpt21f φwX,kYxXyYAwJ×tKCnL^koK
54 1 2 cnmpt2nd φwX,kYkJ×tKCnK
55 eqid KCnL=KCnL
56 toponuni KTopOnYY=K
57 2 56 syl φY=K
58 mpoeq12 KCnL=KCnLY=KfKCnL,zYfz=fKCnL,zKfz
59 55 57 58 sylancr φfKCnL,zYfz=fKCnL,zKfz
60 eqid K=K
61 eqid fKCnL,zKfz=fKCnL,zKfz
62 60 61 xkofvcn KN-Locally Comp LTop fKCnL,zKfzL^koK×tKCnL
63 4 27 62 syl2anc φfKCnL,zKfzL^koK×tKCnL
64 59 63 eqeltrd φfKCnL,zYfzL^koK×tKCnL
65 fveq1 f=xXyYAwfz=xXyYAwz
66 fveq2 z=kxXyYAwz=xXyYAwk
67 65 66 sylan9eq f=xXyYAwz=kfz=xXyYAwk
68 1 2 53 54 30 2 64 67 cnmpt22 φwX,kYxXyYAwkJ×tKCnL
69 51 68 eqeltrrd φxX,yYAJ×tKCnL