| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkoinjcn.3 |
|
| 2 |
|
simplr |
|
| 3 |
2
|
cnmptid |
|
| 4 |
|
simpll |
|
| 5 |
|
simpr |
|
| 6 |
2 4 5
|
cnmptc |
|
| 7 |
2 3 6
|
cnmpt1t |
|
| 8 |
7 1
|
fmptd |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
9 10 11
|
xkobval |
|
| 13 |
12
|
eqabri |
|
| 14 |
|
simpll |
|
| 15 |
14 7
|
sylan |
|
| 16 |
|
imaeq1 |
|
| 17 |
16
|
sseq1d |
|
| 18 |
17
|
elrab3 |
|
| 19 |
15 18
|
syl |
|
| 20 |
|
funmpt |
|
| 21 |
|
simplrl |
|
| 22 |
21
|
elpwid |
|
| 23 |
14
|
simprd |
|
| 24 |
|
toponuni |
|
| 25 |
23 24
|
syl |
|
| 26 |
22 25
|
sseqtrrd |
|
| 27 |
26
|
adantr |
|
| 28 |
|
dmmptg |
|
| 29 |
|
opex |
|
| 30 |
29
|
a1i |
|
| 31 |
28 30
|
mprg |
|
| 32 |
27 31
|
sseqtrrdi |
|
| 33 |
|
funimass4 |
|
| 34 |
20 32 33
|
sylancr |
|
| 35 |
27
|
sselda |
|
| 36 |
|
opeq1 |
|
| 37 |
|
eqid |
|
| 38 |
|
opex |
|
| 39 |
36 37 38
|
fvmpt |
|
| 40 |
35 39
|
syl |
|
| 41 |
40
|
eleq1d |
|
| 42 |
|
vex |
|
| 43 |
|
opeq2 |
|
| 44 |
43
|
eleq1d |
|
| 45 |
42 44
|
ralsn |
|
| 46 |
41 45
|
bitr4di |
|
| 47 |
46
|
ralbidva |
|
| 48 |
|
dfss3 |
|
| 49 |
|
eleq1 |
|
| 50 |
49
|
ralxp |
|
| 51 |
48 50
|
bitri |
|
| 52 |
47 51
|
bitr4di |
|
| 53 |
19 34 52
|
3bitrd |
|
| 54 |
53
|
rabbidva |
|
| 55 |
|
sneq |
|
| 56 |
55
|
xpeq2d |
|
| 57 |
56
|
sseq1d |
|
| 58 |
57
|
elrab |
|
| 59 |
|
eqid |
|
| 60 |
|
eqid |
|
| 61 |
|
simplr |
|
| 62 |
|
simpll |
|
| 63 |
62
|
ad2antrr |
|
| 64 |
|
topontop |
|
| 65 |
63 64
|
syl |
|
| 66 |
|
topontop |
|
| 67 |
66
|
adantl |
|
| 68 |
64
|
adantr |
|
| 69 |
|
txtop |
|
| 70 |
67 68 69
|
syl2anc |
|
| 71 |
70
|
ad3antrrr |
|
| 72 |
|
vex |
|
| 73 |
|
toponmax |
|
| 74 |
63 73
|
syl |
|
| 75 |
|
xpexg |
|
| 76 |
72 74 75
|
sylancr |
|
| 77 |
|
simprr |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
|
elrestr |
|
| 80 |
71 76 78 79
|
syl3anc |
|
| 81 |
67
|
ad3antrrr |
|
| 82 |
72
|
a1i |
|
| 83 |
|
txrest |
|
| 84 |
81 65 82 74 83
|
syl22anc |
|
| 85 |
|
toponuni |
|
| 86 |
63 85
|
syl |
|
| 87 |
86
|
oveq2d |
|
| 88 |
60
|
restid |
|
| 89 |
63 88
|
syl |
|
| 90 |
87 89
|
eqtrd |
|
| 91 |
90
|
oveq2d |
|
| 92 |
84 91
|
eqtrd |
|
| 93 |
80 92
|
eleqtrd |
|
| 94 |
23
|
adantr |
|
| 95 |
26
|
adantr |
|
| 96 |
|
resttopon |
|
| 97 |
94 95 96
|
syl2anc |
|
| 98 |
|
toponuni |
|
| 99 |
97 98
|
syl |
|
| 100 |
99
|
xpeq1d |
|
| 101 |
|
simprr |
|
| 102 |
|
simprl |
|
| 103 |
102
|
snssd |
|
| 104 |
|
xpss2 |
|
| 105 |
103 104
|
syl |
|
| 106 |
101 105
|
ssind |
|
| 107 |
100 106
|
eqsstrrd |
|
| 108 |
102 86
|
eleqtrd |
|
| 109 |
59 60 61 65 93 107 108
|
txtube |
|
| 110 |
|
toponss |
|
| 111 |
63 110
|
sylan |
|
| 112 |
|
ssrab |
|
| 113 |
112
|
baib |
|
| 114 |
111 113
|
syl |
|
| 115 |
|
xpss2 |
|
| 116 |
111 115
|
syl |
|
| 117 |
116
|
biantrud |
|
| 118 |
|
iunid |
|
| 119 |
118
|
xpeq2i |
|
| 120 |
|
xpiundi |
|
| 121 |
119 120
|
eqtr3i |
|
| 122 |
121
|
sseq1i |
|
| 123 |
|
iunss |
|
| 124 |
122 123
|
bitri |
|
| 125 |
|
ssin |
|
| 126 |
117 124 125
|
3bitr3g |
|
| 127 |
99
|
adantr |
|
| 128 |
127
|
xpeq1d |
|
| 129 |
128
|
sseq1d |
|
| 130 |
114 126 129
|
3bitrd |
|
| 131 |
130
|
anbi2d |
|
| 132 |
131
|
rexbidva |
|
| 133 |
109 132
|
mpbird |
|
| 134 |
58 133
|
sylan2b |
|
| 135 |
134
|
ralrimiva |
|
| 136 |
|
eltop2 |
|
| 137 |
14 68 136
|
3syl |
|
| 138 |
135 137
|
mpbird |
|
| 139 |
54 138
|
eqeltrd |
|
| 140 |
|
imaeq2 |
|
| 141 |
1
|
mptpreima |
|
| 142 |
140 141
|
eqtrdi |
|
| 143 |
142
|
eleq1d |
|
| 144 |
139 143
|
syl5ibrcom |
|
| 145 |
144
|
expimpd |
|
| 146 |
145
|
rexlimdvva |
|
| 147 |
13 146
|
biimtrid |
|
| 148 |
147
|
ralrimiv |
|
| 149 |
|
simpl |
|
| 150 |
|
ovex |
|
| 151 |
150
|
pwex |
|
| 152 |
9 10 11
|
xkotf |
|
| 153 |
|
frn |
|
| 154 |
152 153
|
ax-mp |
|
| 155 |
151 154
|
ssexi |
|
| 156 |
155
|
a1i |
|
| 157 |
9 10 11
|
xkoval |
|
| 158 |
67 70 157
|
syl2anc |
|
| 159 |
|
eqid |
|
| 160 |
159
|
xkotopon |
|
| 161 |
67 70 160
|
syl2anc |
|
| 162 |
149 156 158 161
|
subbascn |
|
| 163 |
8 148 162
|
mpbir2and |
|